Enforcer

Enforcer

COLLABORATORS
TITLE -
Enforcer
ACTION NAME DATE SIGNATURE
WRITTEN BY July 16, 2022
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

Enforcer iii

Contents

1 Enforcer 1
L1 main . . .o o e e e e e 1
1.2 credits o e 2
1.3 credits_teSters e e e e e e e e e e e e e e 2
1.4 enforcer 3
1.5 findhit . . . o o e 6
1.6 lawbreaker. e e e 7
L7 mmu . ..o e 9
1.8 movedk . . o 11
1.9 segtracker e e 12
1.10 rebootoff 14
LIT debuggersl e e e e e e 15
112 debuggers2 L e e e e 17
LI3 notesl e e 18
L14 NOtes2 o o o e e e e e 19
115 notes3 . . . o e e 20
116 notesd . . . e e 20
LI7 NOtesh o o e e e e 22
1.18 cpu_library e 23
1.19 cpu_patches e e 25
1.20 copyback_dma oL e e 36
121 option_quiet e e e e e 39
1.22 Option_tiny e e e e e e e e e e e 39
1.23 option_small e e 40
1.24 option_showpe L e 40
1.25 option_stacklines e e e e e e e e 40
1.26 option_stackcheck L e 40
1.27 option_aregcheck L e 41
1.28 option_dregcheck L e e e e 41
1.29 option_datestamp L. L. e e 41

Enforcer iv
1.30 option_deadly L e 42
131 option_fSpace o .. e e e e e e e e e 42
1.32 option_verbose L e e e 42
1.33 option_led e e e e 42
1.34 option_parallel e 43
1.35 OpHON_Tawio o e e e e e e e e e e e 43
1.36 option_file e 43
137 option_stdio e e e e e e e 44
1.38 option_buffersize e 44
1.39 OpHON_INIIO o vt ot e e e e e e e e e e e e e e e e e 44
1.40 Option_priority o oo i e e e e e e e e e 45
1.41 option_noalertpatch e e e e e 45
142 Option_ON e e 45
143 OptON_qQUIT o o o e e e e e e e e e e e e 45
144 output L L e e e 45
1AS findseg o o e e e e 47
146 qUOLES o o e 50
LAT copyright o e e e e e 51
1.48 detailexample L e 52
1.49 output_datestamp L. e e e e e e e e e e e e e 57
1.50 output_Write L e e e e e e e e 57
1.51 output_address e e e e e e e e e e 57
1.52 output_writedata L e e e 57
1.53 OUtPUL_PC . . . o o e e e e e e e e e 58
1.54 output_buserror L e e e 58
155 OULPUL_ST . . . o o o e e e e e e e e e e 58
1.56 OULPUL_SW o o o e e e e 58
1.57 output_decode L e e e e e e 59
1.58 output_tch . . . L L e 59
1.59 output_dataregs e e e e e e e e e 59
1.60 output_dO L e e e 59
1.61 output_dl e 59
1.62 output_d2 e e 60
1.63 output_d3 60
1.64 output_d4 e 60
1.65 output_dS L e 60
1.66 output_d6 L e e 60
1.67 output_d7 e e e e e e 60
1.68 output_addrregs L e 61

Enforcer v

1.69 output_a0 e 61
170 output_al e e e e e e 61
171 output_a2 e e 61
L72 output_a3 e e e 61
L73 output_ad e e e e 61
174 output_aS o e 62
175 output_ab L. e 62
L76 output_a7 o e e e e e e e 62
177 output_stack e e 62
1.78 output_stackword L e e e e e 62
1.79 output_segtracker e 63
1.80 output_segtrackeraddress L L e e e 63
1.81 output_segtrackername L e e e e e e e e e 63
1.82 output_segtrackerhunk oL 63
1.83 output_segtrackeroffset L e 63
L84 output_name e e e e e e e e e e 64
1.85 output_taskname L. e e 64
1.86 output_cliname L e e e e e e e e e e e 64
1.87 output_alert L e e e 64
1.88 output_alertnum e e e e e 64
1.89 output_showpc L L e e 64
1.90 output_showpc_mS8 L e e 65
1.91 output_showpc_m7 L e e e e e 65
1.92 output_showpc_m6 e e 65
1.93 output_showpc_m5 L e e 65
1.94 output_showpc_m4 e e 65
1.95 output_showpc_m3 L e 66
1.96 output_showpc_m2 e e 66
1.97 output_showpc_ml oL e e 66
1.98 output_showpc_p0 e 66
1.99 output_showpc_pl e e e e e 66
1.1000utput_showpc_p2 e e 67
L.10Toutput_Showpc_p3 o e 67
1.1020utput_showpc_p4d o o e e e 67
1.1030utput_showpe_pS e e 67
1.104output_showpc_pb L e e e 67
L10Soutput_showpc_p7 o o o e e e 68
1.106sourcecode e e 68
I.107orderform L e e e 69

1.108Indexo e e 69

Enforcer 1/73

Chapter 1

Enforcer

1.1 main
Enforcer by
Michael Sinz
Copyright 1992-1998
All Rights Reserved

Enforcer

SegTracker

FindHit

LawBreaker

RebootOff

Move4K

MMU

Copyright

Credits

Rt b d b b b b b b b b b b b b b b b b a2 b b b b b b b b i 4

* *
* Permission is hereby granted to distribute the Enforcer archive *
* containing the executables and documentation for non-commercial purposes *
* so long as the archive and its contents are not modified in any way. *
* *
* Enforcer and related tools may not be distributed for a profit. *
* *
* Enforcer and related tools are not in the public domain. *
* *
R I b b 4 b 2 b b b b b b b b b b b b b b b b 2 b b b b b b b b I b db b b b b b b b db b b b b b e 4

Enforcer

2/73

—-———> Support Enforcer - Register today and get a source code <
license! <————-

| Michael Sinz

| I-NET: Enforcer@sinz.org |
| BIX: msinz or msinz@bix.com |
| "Can’t I just bend one of the rules?" said the student. |
| The Master just looked back at him with a sad expression. |

1.2 credits

I would like to thank those nice people at ATL to letting me have
a
68060 based Amiga to work with. Without it, the 68060 support would
not have been possible.

I would like to thank Bryce Nesbitt for coming up with the original
Enforcer idea. Enforcer has helped the Amiga more than any other
debugging tool.

The Enforcer shield in the icon was designed by David "talin" Joiner.

I would also like to thank
the people
who stayed with me during
all the long testing and the many beta releases Enforcer had.

However, I want to thank most the Amiga developers who use Enforcer
every day. Like any other tool, Enforcer can not help the quality
of Amiga software if it is not used. Running Enforcer all the time
makes it easier to notice bugs that happen during regular use of
the Amiga.

Thank you for making your software better! It really does help the
Amiga when the software for it works well.

—— Michael Sinz

PS - To those people who still say that Enforcer causes working software
to have problems: Enforcer just points out actions in software that

are already a problem and could cause major problems in some cases.
Enforcer does =xnot* cause any problems for software that does not

access invalid addresses. Enforcer is 100% benign to software that
follows the rules.

1.3 credits_testers

The following are some of the people who helped test
various versions of Enforcer V37:

H

Enforcer

3/73

Peter Cherna
Dave Haynie

Erik Quackenbush
Martin Taillefer
Brian Gontowski
Toby Simpson
Benjamin Fuller
David Joiner
James M. Barkley,
Chris Green
David N. Junod
Joanne Dow

Jim Cooper

Doug Walker
Steve Krueger
Steve Tibbett
Heinz Wrobel
Kenneth T. Spoor
Victor A. Wagner
Sebastiano Vigna
Tomas Rokicki
Redmond Simonsen
Willem Langeveld
Marvin Weinstein
Lamonte Koop
Allan M. Purtle
Gregory B Tibbs
Robert Chapman

1.4 enforcer

peter.cherna@scala.com
dave.haynie@scala.com
erik.quackenbush@scala.com
vertex@bix.com
bgontowski@bix.com
toby@bix
benfuller@bix.com
talin@bix.com
jim.barkley@scala.com
c_green@bix.com
djunod@bix.com
jdow@bix.com
jcooper@bix.com
djwalker@bix.com
skrueger@bix.com
s.tibbettlbix.com
heinz@hwg.muc.de
metadigm@bix.com
metadigm@bix.com
svigna@bix.com
radical.eye@bix.com
rsimonsen@bix.com
langeveld@bix.com
mweinstein@bix.com
lkoop@bix.com
snapper@mgl.ca
gbtibbs@bix.com
rchapman@bix.com

Enforcer V37 - An advanced version of Enforcer - Requires V37
SYNOPSIS
Enforcer - A tool to watch for illegal memory accesses
FUNCTION

Enforcer will use the MMU in the advanced 680x0 processors
to set up MMU tables to watch for illegal accesses to memory

such as the low-page and non-existent pages.

To use, run Enforcer (plus any options you may wish)

If you wish to detach, just use RUN >NIL: <NIL: to start it.

You can also start it from the Workbench. When started from Workbench,
Enforcer will read the tooltypes of its icon or selected project icon
for its options. (See the sample project icons)

Enforcer should only be run xafterx SetPatch.

If
SegTracker
is running in the system when Enforcer is started,
Enforcer will use the public
SegTracker
seglist tracking for

Enforcer

4/73

identifying the hits.
INPUTS
The options for Enforcer are as follows:
QUIET
DATESTAMP
STDIO
TINY
DEADLY
BUFFERSIZE
SMALL
FSPACE
INTRO
SHOWPC
VERBOSE
PRIORITY
STACKLINES
LED
NOALERTPATCH
STACKCHECK
PARALLEL
ON
AREGCHECK
RAWIO
QUIT
DREGCHECK
FILE
RESULTS
When run, a set of MMU tables that map addresses that are not
in the system’s address map as invalid are installed. Enforcer
will then trap invalid access attempts and generate a diagnostic

message as to what the illegal access was. The first memory page
(the one starting at location 0) is also marked as invalid as many

Enforcer 5/73

NOTES

programming errors cause invalid access to these addresses. Invalid
addresses are completely off limits to applications.

When an access violation happens, a report such as the following
is output.

Output Example

Detail Example

WARNING
Enforcer is for software testing. In this role it is wvital.
Software that causes Enforcer hits may not be able to run on
newer hardware. (Enforcer hits of high addresses on systems not
running Enforcer but with a 68040 will most likely crash the system)
Future systems and hardware will make this even more important. The
system can NOT survive software that causes Enforcer hits.

However, Enforcer is NOT a system protector. As a side effect, it
may well keep a system from crashing when Enforcer hits happen, but
it may just as well make the software crash earlier. Enforcer is
mainly a development and testing tool.

Enforcer causes no i1l1ll effects with correctly working software.

If a program fails to work while Enforcer is active, you should
contact the developer of that program.

General Notes
68020 Notes
68030 Notes
68040 Notes
68060 Notes
BridgeBoard
Important 680x0.library developer notes
WRITING DEBUGGERS
If you wish to make a debugger that works with Enforcer to help
pinpoint Enforcer hits in the application and not cause Enforcer
hits itself, here are some simple tips and a bit of code.
Debuggers: Trapping a hit
Debuggers: Not causing a hit
SEE ALSO

"A master’s secrets are only as good as the
master’s ability to explain them to others." - Michael Sinz

Enforcer

6/73

1.5 findhit
FindHit - A tool that can locate the source file and line number
that a
SegTracker
report happened at.
SYNOPSIS

FindHit will read the executable file and if there is debugging
information in it, will try to locate the source file and line
number that correspond to the
Enforcer
hit HUNK/OFFSET.

FUNCTION
FindHit uses the Lattice/SAS/MetaScope standard ’'LINE’
debug hunk to locate the closest line to the hunk/offset given.
Note that this can only happen if the executable has the
LINE debugging turned on. (The
LawBreaker
program has this
such that you can test this yourself.)

In SAS/C 6.x, you need to compile with DEBUG=LINE or better
and do not use the link option of NODEBUG.

In SAS/C 5.x, you need to compile with -dl or better.

Note that FindHit works with the old SAS/C 5.x ’SRC '
debugging information too. This is required for -d2 or
higher debugging support. However, I do not have ’SRC ’ hunk
documentation and thus FindHit may be very specific to the
SAS/C 5.x version of this hunk.

In DICE (2.07 registered being the one I tried) the -dl
debug switch also supports the ’'LINE’ debug hunk and
works with FindHit.

In HX68 and CAPE, you need to add the DEBUG directive to
the assembly code program. (See
LawBreaker
source)

For other languages, or other versions of the above, please
see the documentation that comes with the language.

INPUTS
FILE/A — The executable file, with debugging information.

OFFSETS/A/M - The HEX offset (with or without leading $)
If a hunk number other than the default
is needed, it is expressed as hunk:offset.
The default hunk is that of the last argument
or hunk 0 if no hunk number has been given.
For example: 12 $22 $3:12 22 4:312 32 $0:$32
will find information for:
hunk $0, offset $12

Enforcer

7173

hunk $0, offset $22
hunk $3, offset $12
hunk $3, offset $22
hunk $4, offset $12
hunk $4, offset $32
hunk $0, offset $32

EXAMPLE

NOTES

FindHit FooBar $0342 $1:4F2 3:$1A 2C

badcode.c : Line 184

No line number information for Hunk $1, Offset $4F2
badcode2.c : Line 12

badcode2.c : Line 14

See the
Enforcer
documentation about issues dealing with the
exact location of the
Enforcer
hit. The line given may
not be exactly where the hit happened.

The way I use this is to always have line debugging turned on
when I compile. This does not change the quality of the code
and takes only a small amount of extra disk space. However,
what I do is to link the program twice: Once to a file called
program.ld which contains all of the debugging information.
Then, I link program.ld to program, stripping debug information.
The command line for SLINK or BLINK is as follows:

BLINK program.ld TO program NODEBUG

I keep both of these on hand; with program being the one I
distribute and use. When a hit happens, I can Jjust use program.ld
with FindHit to get the line number and source file that it happened
in. This way you can distribute your software without the debugging
information and still be able to use FindHit on the actual code.
(After all, that link command does nothing but strip symbol and
debug hunks)

Note that this program does nothing when run from the Workbench
and thus does not have an icon.

SEE ALSO

1.6

"Quantum Physics: The Dreams that Stuff is made of." - Michael Sinz

lawbreaker

LawBreaker - A quicky test of
Enforcer
SYNOPSIS
This is a quick test of
Enforcer
and its reporting abilities.

Enforcer

8/73

FUNCTION
This program is used to make sure that
Enforcer
is correctly
installed and operating. LawBreaker works from either the CLI
or Workbench. It will try to read and write certain memory
areas that will cause an
Enforcer
hit or four.

LawBreaker will also do an Alert to show how
Enforcer
reports
an Alert.

Note that the LawBreaker executable has debugging information

in it (standard LINE format debug hunk) such that you can
try the
FindHit
program to find the line that causes the hit.
INPUTS

Just run it...

RESULTS
When running
Enforcer
, you will see some output from
Enforcer

Output on a 68030 machine would look something like this:

25-Jul-93 17:15:04

WORD-WRITE to 00000000 data=0000 PC: 0763857C

USP: 07657C14 SR: 0004 Sw: 04Cl (U0) (=) (=) TCB: 07642F70

Data: DDDD0O0OOO DDDD1111 DDDD2222 DDDD3333 0763852A DDDD5555 DDDD6666
Addr: AAAAQ000 AAAAI1111 AAAA2222 AAAA3333 AAAA4444 (0763852A 07400810
Stck: 00000000 0752EE9A 00002800 07643994 00000000 076786D8 000208BO
Stck: 487AFD12 486C82C4 4EBA3D50 4EBAEA28 4FEF0014 52ACE2E4 204D43EC
-——-> 0763857C - "lawbreaker" Hunk 0000 Offset 00000074

Name: "Shell" CLI: "LawBreaker" Hunk 0000 Offset 00000074
25-Jul-93 17:15:04

LONG-READ from AAAA4444 PC: 07638580

USP: 07657C14 SR: 0015 Sw: 0501 (UO0) (F) (=) TCB: 07642F70

Data: DDDD0O0OOO DDDD1111 DDDD2222 DDDD3333 0763852A DDDD5555 DDDD6666
Addr: AAAAQ000 AAAAI1111 AAAA2222 AAAA3333 AAAA4444 (0763852A 07400810
Stck: 00000000 0752EE9A 00002800 07643994 00000000 076786D8 000208BO
Stck: 487AFD12 486C82C4 4EBA3D50 4EBAEA28 4FEF0014 52ACE2E4 204D43EC
-——-> 07638580 - "lawbreaker" Hunk 0000 Offset 00000078

Name: "Shell" CLI: "LawBreaker" Hunk 0000 Offset 00000078
25-Jul-93 17:15:04

BYTE-WRITE to 00000101 data=11 PC: 0763858A

USP: 07657C14 SR: 0010 Sw: 04A1 (U0) (F) (D) TCB: 07642F70

Data: 00000000 DDDD1111 DDDD2222 DDDD3333 0763852A DDDD5555 DDDD6666

DDDD7777

2EAC80EE
88BC203C

DDDD7777

2EAC80EE
88BC203C

DDDD7777

Enforcer 9/73

Addr: AAAAQ000 AAAA1111 AAAA2222 AAAA3333 AAAA4444 (0763852A 07400810 ———————-—
Stck: 00000000 O0752EE9A 00002800 07643994 00000000 076786D8 000208B0 2EACS80OEE
Stck: 487AFD12 486C82C4 4EBA3D50 4EBAEA28 4FEF0014 52ACE2E4 204D43EC 88BC203C
—-———> 0763858A - "lawbreaker" Hunk 0000 Offset 00000082

Name: "Shell" CLI: "LawBreaker" Hunk 0000 Offset 00000082

25-Jul-93 17:15:04

LONG-WRITE to 00000102 data=00000000 PC: 07638592

USP: 07657C14 SR: 0014 Sw: 0481 (U0) (—-) (D) TCB: 07642F70

Data: 00000000 DDDD1111 DDDD2222 DDDD3333 0763852A DDDD5555 DDDD6666 DDDD7777
Addr: AAAAQ000 AAAAI1111 AAAA2222 AAAA3333 AAAA4444 (0763852A 07400810 ———————-—
Stck: 00000000 0752EE9A 00002800 07643994 00000000 076786D8 000208B0 2EACS80EE
Stck: 487AFD12 486C82C4 4EBA3D50 4EBAEA28 4FEF0014 52ACE2E4 204D43EC 88BC203C
————> 07638592 - "lawbreaker" Hunk 0000 Offset 0000008A

Name: "Shell" CLI: "LawBreaker" Hunk 0000 Offset 0000008A

25-Jul-93 17:15:06

Alert !! Alert 35000000 TCB: 07642F70 USP: 07657C10

Data: 00000000 DDDD1111 DDDD2222 DDDD3333 0763852A DDDD5555 DDDD6666 35000000
Addr: AAAA0000 AAAA1111 AAAA2222 AAAA3333 AAAA4444 0763852A 07400810 ———————-
Stck: 076385A0 00000000 0752EE9A 00002800 07643994 00000000 0762F710 076305F0
—-———> 076385A0 - "lawbreaker" Hunk 0000 Offset 00000098

Now, using
FindHit
, you would type:

FindHit LawBreaker 0:82

and it will tell you the source file name and the line number
where the hit happened. See the

FindHit
documentation.
NOTES
If
Enforcer
is not running, the program should not cause the
system to crash. It will, however, write to certain areas
of low memory. Also, it will cause read access of some
addresses that may not exist. This may cause bus faults.
SEE ALSO
"Quantum Physics: The Dreams that Stuff is made of." - Michael Sinz
BUGS

There are 4 known

Enforcer

hits in this code and 1 alert, however,
they will not be fixed. i)

1.7 mmu

MMU - A 68040/68060 MMU Mapping Tool

Enforcer

10/73

SYNOPSIS
MMU is a tool
configuration
compressed as
same and only

possible,

contained within.

address
address
address
address
address
address
address
address
address
address
address
address

range
range
range
range
range
Show the changes as they are made
Do not show the whole table

Hex address to display
Hex address size of address range
range
range
range
range
range
range
range

to
to
to
to
to
to
to
to
to
to
to
to

INPUTS
ADDRESS/K -
SIZE/K -
READWRITE — Change
READONLY — Change
VALID — Change
INVALID - Change
CACHE — Change
NOCACHE — Change
COPYBACK — Change
NOCOPYBACK — Change
GLOBAL - Change
LOCAL - Change
SUPERVISOR - Change
USER — Change
VERBOSE -
NOSHOW -
RESULTS
On my A3000 with a 68040 installed and
Enforcer
running, the

MMU output looks as follo

Current 68040 MMU table setup:

$00000000-$00000FFF->$00000000:
$00001000-$001FFFFF->$00001000:
$00200000-$00BBFFFF->5$07542000:
$00BCO000-S$SO00BFFFFF->S00BC0000:
$00C00000-$S00D7FFFF->5$07542000:
$00D80000-S$SO0ODFFFFF->$00D80000:
SO0EOO000-S$SO0E8FFFF->507542000:
$00E90000-$S00EAFFFF->$00E90000:
$00EBOO00O-SO0EFFFFF—>$07542000:
$00F00000-$S00FFFFFF->$00F00000:
$01000000-$073FFFFF->507542000:
$07400000-$07F7FFFF->507400000:
$07F80000-SFFFFFFFF->507542000:

WARNING

WS :

Local,
Global,
Local,
Global,
Local,
Global,
Local,
Global,
Local,
Global,
Local,
Global,
Local,

User,
User,
User,
User,
User,
User,
User,
User,
User,
User,
User,
User,
User,

(if not given,

all)

ReadWrite

ReadOnly

VALID

INVALID

CACHE enable
CACHE disable
non-serialized
serialized

GLOBAL
LOCAL

SUPERVISOR-only
USER access

(No options)

Invalid,
Valid,
Invalid,
Valid,
Invalid,
valid,
Invalid,
Valid,
Invalid,
Valid,
Invalid,
Valid,
Invalid,

Read-Only,
Read/Write,
Read-Only,
Read/Write,
Read-Only,
Read/Write,
Read-Only,
Read/Write,
Read-Only,
Read-Only,
Read-Only,
Read/Write,
Read-Only,

for 68040/060 systems to display and/or change the MMU
MMU will display the tables as
noting address ranges that are mapped the
displaying one line for the whole range.

Serialized
Serialized
Serialized
Serialized
Serialized
Serialized
Serialized
Serialized
Serialized

Copyback
Serialized

Copyback
Serialized

This tool is a hack and does not have any safeguards on the options.

Use at your own risk.

SEE ALSO

"A master’s secrets are only as good as the
master’s ability to explain them to others." -

BUGS

Misuse can cause major problems on your system.
MMU will not check that what you are doing is safe.

Michael Sinz

Be *VERY* careful!

Enforcer 11/73

1.8 move4dk

Moved4K - Moves as much out of the lower 4K of RAM as possible

SYNOPSIS
On 68040 systems, as much of the lower 4K of CHIP RAM as possible
is removed from system use.

FUNCTION

On 68040 systems the MMU page sizes are 4K and 8K.

Enforcer

uses the 4K page size. Since watching for hits of low memory

is a vital part of

Enforcer

, this means that the first 4K
of RAM will be marked invalid. On current systems, only

the first 1K of RAM is invalid and thus 3K of RAM in that
first 4K will end up needing to be emulated in
Enforcer

In order to reduce the overhead that this causes (and the
major performance loss) this program will try to move as much
from that first 4K as possible and make any of the free
memory within the first 4K inaccessible.

Enforcer
itself also has this logic, but it may be useful
to be able to run this program as the first program in
the Startup-Sequence (*AFTERx SetPatch) to try to limit
the number of things that may use the lower 4K of RAM.

INPUTS
Just run it... Can be run from CLI or Workbench

RESULTS
Any available memory in the lower 4K of CHIP RAM is removed
plus a special graphics buffer is moved if it needs to be.
After running this program you may have a bit less CHIP RAM
than before. You can run this program as many times as you
wish since it only moves things if it needs to.

NOTES
This program will do nothing on systems without a 68040.
It does not, however, check for the MMU and thus it will
move the lower 4K even if the CPU is not able to run
Enforcer

V39 of the operating system already does have the lowest
MMU page empty and thus this program will effectively do
nothing under V39.

SEE ALSO
"Eloquence is vehement simplicity"

Enforcer 12/73

BUGS
None.

1.9 segtracker

SegTracker - A global SegList tracking utility

SYNOPSIS
A global tracking utility for disk loaded files including
libraries and devices. If placed in the startup-sequence

right after SetPatch, it will track all disk loaded segments
(other than those loaded by SetPatch)

FUNCTION
SegTracker will patch the DOS LoadSeg(), NewLoadSeg(), and UnLoadSeg/()
functions in order to track the SegLists that are loaded.
SegTracker keeps these seglist stored in a "safe" manner and
even handles programs which SegList split.

The first time the program is run, it installs the patches
and semaphore. After that point, it Jjust finds the semaphore
and uses 1it.

When SegTracker is installed, it will scan the ROM for ROM modules
and add their locations to the tracking list such that addresses
within those modules can be identified. Note that the offsets
from the module is based on the location of the module’s ROMTAG.
The NOROM option will prevent this feature from being installed.

By using SegTracker, it will be possible to better identify

where
Enforcer
hits come from when dealing with libraries
and devices. Basically, it is a system-global Hunk-o-matic.

External programs can then pass in an address to SegTracker
either via the command line or via the given function pointer
in the SegTracker semaphore and get back results as to what
hunk and offset the address is at.

To work with the function directly, you need to find the
the semaphore of "SegTracker" using FindSemaphore ().
The structure found will be the following:

struct SegSem

{

struct SignalSemaphore seg_Semaphore;
SegTrack *seg_Find;

Vi

The function pointer points to a routine that takes an address
and two pointers to long words for returning the Segment number
and Offset within the segment. The function returns the name
of the file loaded. Note that you must call this function
while in Forbid() and then copy the name as the seglist may

Enforcer 13/73

be UnLoadSeg’ed at any moment and the name string will then
no longer be in memory.

typedef char (x __asm SegTrack (register __a0 ULONG Address,
register __al ULONG xSegNum,
register __a2 ULONG *xOffset));

The above is for use in C code function pointer prototype
in SAS/C 5 and 6.

INPUTS
SHOW/S - Shows all of the segments being tracked.
DUMP/S - Displays all of the segment elements being tracked.

NOROM/S - Tells segtracker not to scan ROM when it is
installed, thus not adding ROM addresses to the
tracking list.

FIND/M

Find the hex (in $xxxxx format) address in
the tracked segments. Multiple addresses
can be given.

Options are not available from Workbench as they require
the CLI. However, you can run SegTracker from Workbench

to install it.

EXAMPLE USAGE

Example program

NOTES
The earlier this command is run, the better off it will be in
tracking disk loaded segments. Under debug usage, you may

wish to run the command right *AFTER* SetPatch.

Some things may not call UnLoadSeg() to free their seglists.
There is no way SegTracker can follow a seglist that is not

unloaded via the dos.library call to UnLoadSeg (). For this
reason, SegTracker adds new LoadSeg() segments to the top
of its list. This way, if any old segments are still on

the list but have been unloaded via some other method
they will not clash with newer segments during the find operation.

Note that the resident list is one such place where
UnLoadSeg () 1s not called to free the seglist. Thus,
if something is made resident and then later unloaded
it will still be listed as tracked by SegTracker.

In order to support a new feature in CPR, the SegTracker function
got a "kludge" added to it. If a segment is found, you can then
call the function again with the same address but with having
both pointers point to the same longword of storage. By doing
this, the function will now return (in that longword) the

SegList pointer (CPTR not BPTR) of the file that contains

the address. The reason this method was used was so it

would be compatible with older SegTracker versions. In older

Enforcer

14 /73

versions you would not get the result you wanted but you would
also not crash. See the example above for more details on how
to use this feature. The SegTracker FIND option has been
expanded to include this information.

Due to the fact that I am working on a design of a new set of
debugging tools (Enforcer/SegTracker/etc) I do not wish to
expand the current SegTracker model in too many ways.

SEE ALSO
"Quantum Physics: The Dreams that Stuff is made of." - Michael Sinz

1.10 rebootoff

RebootOff - A keyboard reset handler to turn off Enforcer

SYNOPSIS
This is a simple utility that will turn off
Enforcer
when a
keyboard reset happens.

FUNCTION
This utility uses the feature of the A1000/A2000/A3000/A4000
Amiga systems to turn off
Enforcer
when the user does a
keyboard reset (ctrl-Amiga-Amiga). This utility requires that
your Amiga supports (in hardware) the keyboard reset system.

The reason this was written was so that

Enforcer

could be

"quit" just before you reboot your Amiga 3000. This way
it will let the kickstart not need to be reloaded and
thus let utilities such as RAD: work across reboots. Note
that this does #*notx help in the case where the Amiga reboots
under software conditions. It is only for keyboard resets.

INPUTS
Just run it from either the CLI or Workbench. It installs
a handler and exits. On a keyboard reset, it will turn
Enforcer
off before it lets the reset continue... (max time of 10
seconds)

RESULTS
Installs a small reset handler object and task into the system.
About 3700 bytes needed the first time it is run.

NOTES
If
Enforcer
is not running, nothing will happen at Reset time.
If

Enforcer 15/73

Enforcer
can not quit, the reset system will continue to try

to quit

Enforcer

until the hardware timeout happens...

SEE ALSO

From the home of the imaginary deadlines:
"Tt will take 21 weeks to do that project." - Michael Sinz

1.11 debuggers1

To trap a hit requires a number of things to work.

First, the debugger itself must never cause an
Enforcer
hit.
For help on that, see the "DEBUGGERS: NOT CAUSING A HIT"

Second, the debugger must be global. That is, you must be

able to deal with a task getting a hit that is not the task
under test. There are a number of simple ways to deal with
this, and I will leave this up to the debugger writer.

(One method will be shown below)

Third, the debugger must start *AFTER«*

Enforcer
starts.

If it is started before

Enforcer

, the hits will not be
trapped. (Note that this is not a problem)
A very important point: The code needs to be fast for
the special case of location 4. This is shown in the

code below. It is very important that this be fast.

Note that it is much prefered that debuggers use the
method described below for trapping hits. It should
be much more supportable this way as any of the tricky
work that may need to be done in the hit processing
will be handled by
Enforcer
itself. TIf you wish the
hit decoded, you can capture the
Enforcer
output via a
pipe or some other method (such as
RAWIO
) or you can
leave that issue up to the user.

Now, given the above, the following bits of code can be
used to get the debugger to switch into single-step mode
at the point of the

Enforcer

16/73

data value here

; The following
; Make sure you
; Store the old
; Make sure you

; installed before you install this.

; fault of any kind,

Enforcer

hit. You can also set some
to tell your debugger about this.

code is inserted into the bus error vector.

follow the VBR to find the vector.

vector in the address OldVector
already have the single-step trap vector
Note that any extra
; code you add in the comment area x*MUST NOTx cause a bus

; This is the common part...

4
EnforcerHit:
MyTask:
MyExecBase:
OldVector:

Common :

TraceSkip:

4

; This is the 68020/68030 version...

4

NewVector030:

14

ds.1l 1
ds.1 1
ds.1l 1
ds.1l 1

14

; Now, if you wish to only trap a

; do the check at this point.

including reading of location 4.

Some private flag
Task under test
The local copy
One long word

specific task,

For example, a

; simple single-task debugger would do something

; like this:

move.l a0, - (sp)

move.l MyExecBase (pc),al
move.l ThisTask (a0),a0
cmp. 1 MyTask (pc), a0
move.l (sp)+,a0

bne.s TraceSkip

bset.b #7, (sp)

14

Save this...

Get ExecBase...

Get ThisTask

Are they the same?
Restore A0 (no flags)
If not my task, skip

Set trace bit...

; If you have any other data to set, do it now...
; Set as setting the EnforcerHit bit in your data...
addg.l #1,EnforcerHit

14
move.l
rts

cmp. 1l #4,510 (sp)
beqg.s TraceSkip
bra.s Common

; This is the 68040 version...

4

NewVector040:

4

cmp. 1 #4,514 (sp)
beqg.s TraceSkip
bra.s Common

; This is the 68060 version...

4

NewVector060:

cmp. 1 #4,508 (sp)
beqg.s TraceSkip
bra.s Common

OldVector (pc), - (sp)

Do the

Do the

Do the

’
7
common

7
7
common

7
7
common

Count the hit...

Ready to return

68020 and 68030
If AbskExecBase, OK
stuff

68040
If AbskExecBase, OK
stuff

68060
If AbskExecBase, OK
stuff

Enforcer 177173

1.12 debuggers2

In order not to cause Enforcer hits, you can do a number

of things. The easiest is to test the address with the TypeOfMem()
EXEC function. If TypeOfMem() returns 0, the address is not

in the memory lists. However, this does not mean it is not a
valid address in all cases. (ROM, chip registers, I/0 boards)

For those cases, you can build a "valid memory access table"

much like Enforcer does. Here is the code from Enforcer for

the base memory tables:

/ *
* Mark_Address (mmu, start address, length, type)
*/

/ %
* Special case the first page of CHIP RAM
*/
mmu=Mark_Address (mmu, 0, 0x1000, INVALID | NONCACHEABLE) ;

/ %
* Map in the free memory
*/
Forbid () ;
mem= (struct MemHeader =x)SysBase->MemList.lh_ Head;
while (mem—>mh_Node.ln_Succ)
{
mmu=Mark_Address (mmu,
(ULONG) (mem—>mh_TLower),
(ULONG) (mem—>mh_Upper) — (ULONG) (mem—>mh_Lower),
((MEMF_CHIP & TypeOfMem (mem—->mh_Lower)) °?
(NONCACHEABLE | VALID) : (CACHEABLE | VALID)));
mem= (struct MemHeader =) (mem—->mh_Node.ln_Succ);
}

Permit () ;

/ *
* Map in the autoconfig boards
*/
if (ExpansionBase=0OpenlLibrary ("expansion.library",0))
{
struct ConfigDev *cd=NULL;

while (cd=FindConfigDev (cd,-1L,-1L))
{
/* Skip memory boards... */
if (!(cd->cd_Rom.er_Type & ERTF_MEMLIST))
{
mmu=Mark_Address (mmu,
(ULONG) (cd->cd_BoardAddr),
cd->cd_BoardSize,
VALID | NONCACHEABRLE) ;

}

Closelibrary (ExpansionBase) ;

Enforcer 18/73

/ %

* Now for the control areas...

*/
mmu=Mark_Address (mmu, 0Ox00BC0000, 0x00040000, VALID | NONCACHEABLE) ;
mmu=Mark_Address (mmu, 0x00D80000, 0x00080000, VALID | NONCACHEABLE) ;

/ *
* and the ROM...
*/
mmu=Mark_Address (mmu,
0x00F80000,
0x00080000,
VALID | CACHEABLE | WRITEPROTECT) ;
/ %
+ If the credit card resource, make the addresses valid...
*/

if (OpenResource ("card.resource"))

{
mmu=Mark_Address (mmu, 0x00600000, 0x00440002, VALID | NONCACHEABLE) ;

/ *
* If CD-based Amiga (CDTV, A570, etc.)
*/
if (FindResident ("cdstrap"))
{
mmu=Mark_Address (mmu, 0x00E00000, 0x00080000, VALID | NONCACHEABLE) ;
mmu=Mark_Address (mmu, 0x00B80000, 0x00040000, VALID | NONCACHEABLE) ;

/ %
* Check for ReKick/ZKick/KickIt
*/
if ((((ULONG) (SysBase->LibNode.lib_Node.ln_Name)) >> 16) == 0x20)

{
mmu=Mark_Address (mmu,
0x00200000,
0x00080000,
VALID | CACHEABLE | WRITEPROTECT) ;

1.13 notes1

This is Enforcer V37. Bryce Nesbitt came up with the original
"Enforcer" that has been instrumental to the improvement in the
quality of software on the Amiga. The Amiga users and developers
owe him a great deal for this. Thank you Bryce! Enforcer V37,
however, is a greatly enhanced and more advanced tool.

Enforcer V37 came about due to a number of needs. These included
the need for more output options and better performance. It also
marks the removal of all kludges that were in the older versions.
Also, some future plans required some of these changes...

Enforcer 19/73

In addition, the complete redesign was needed in order to

support the 68040. The internal design of Enforcer is now set up
such that CPU/MMU specific code can be cleanly accessed from the
general house keeping aspect of the code. The MMU bus error
handling is, however, 100% CPU specific.

Since AbsExecBase is in low memory, reads of this address are slower
with Enforcer running. Caching AbsExecBase locally is highly
recommended since it is in CHIP memory and on systems with FAST
memory, it will be faster to access the local cached value. (In
addition to the performance increase when running Enforcer) Note
that doing many reads of location 4 will hurt interrupt performance.

When the Amiga produces an ALERT, EXEC places some magic numbers
into some special locations in low memory. The exact pattern
changes between versions of the operating system.

Enforcer will patch the EXEC function ColdReboot () in an attempt to
"get out of the way" when someone tries to reboot the system.
Enforcer will clean up as much as possible the MMU tables and then
call the original LVO. When Enforcer is asked to quit, it will
check to make sure it can remove itself from this LVO. If it can
not, it will not quit at that time. If run from the shell, it will
display a message saying that it tried but could not exit. Enforcer
will continue to be active and you can try later to deactivate it.

Enforcer will also patch the EXEC function Alert () in an attempt to
provide better tracking of other events in the system. It is also
patched such that dead-end alerts will correctly reset the system
and be displayed. With this patch in place, the normal alerts will
not be seen but will be replaced by the Enforcer output shown
above. See

LawBreaker

for a more complete example of this.

Other notes:
68020 Notes
68030 Notes
68040 Notes
68060 Notes

BridgeBoard

1.14 notes2

The 68020 does not have a built-in MMU but has a co-processor
feature that lets an external MMU be connected. Enforcer MMU code
is designed for use with 68851 MMU. This is the some-what 68030
compatible MMU by Motorola. Enforcer uses the same code for both
the 68030 and the 68020/68851. For this reason, 68020/68851 users

Enforcer

20/73

should see the
68030 NOTES
section.

1.15 notes3

The 68030 uses cycle/instruction continuation and will

supply the data on reads and ignore writes during an access

fault rather than let the real bus cycle happen. This means

that on a fault caused by MMU tables, no bus cycle to the

fault address will be generated. (For those of you with analyzers)

In some cases, the 68030 will have advanced the Program Counter
past the instruction by the time the access fault happens.

This is usually only on WRITE faults. For this reason, the PC
may either point at the instruction that caused the fault or
just after the instruction that caused the fault. (Which could
mean that it is pointing to the middle of the instruction

that caused the fault.)

Note that there is a processor called 68EC030. This processor

has a disabled or defective MMU. However, it may function well
enough for Enforcer to think it has a fully functional MMU and
thus Enforcer will attempt to run. However, even if it looks like
the MMU is functioning, it is not fully operational and thus may
cause strange system activity and even crashes. Do not assume
that Enforcer is safe to use on 68EC030 systems.

1.16 notesd

Enforcer, on the 68040, xrequires* that the

68040.1library

be
installed and it requires an MMU 68040 CPU. The 68EC040 does not
have a MMU. The 68LC040 does have an MMU and is supported. Enforcer
will work best in a system with the

68040.1library

37.10 or better

but it does know how to deal with systems that do not have that
version.

Due to the design of the 68040, Enforcer is required to do a number
of things differently. For example, the MMU page size can only be
either 8K or 4K. This means that to protect the low 1K of memory,
Enforcer will end up having to mark the first 4K of memory as
invalid and emulate the access to the 3K of that memory that is
valid. For this reason Enforcer moves a number of possible
structures from the first 4K of memory to higher addresses. This
means that the system will continue to run at a reasonable speed.
The first time Enforcer is run it may need to allocate memory for
these structures that it will move. Enforcer can never return this
memory to the system.

Enforcer 21/73

In addition to the fact that the 68040 MMU table size is different,
the address fault handling is also different. ©Namely, the 68040 can
only rerun the cycle and not continue it like the 68030. This means
that on a 68040, the page must be made available first and then made
unavailable. To make this work, Enforcer will switch the instruction
that caused the error into trace mode and let it run with a special
MMU setup. When the trace exception comes in, the MMU is set

back to the way it was. Enforcer does its best to keep debuggers
working. Note, however, that the interrupt level during a trace of
a READ will end up being set to 7. This is to prevent interrupts
from changing the order of trace/MMU table execution. The level
will be restored to the original state before continuing. Since TO
mode tracing is also supported, there are also some changes in the
way it operates. TO0 mode tracing is defined, on the 68040, to cause
a trace whenever the instruction pipeline needed to be reloaded.
While on the 68020/030 processors this was normally only for the
branch instructions, in the 68040 this includes a large number of

other instructions. (Including NOP!) Anyway, if an Enforcer hit
happens while in TO tracing mode, the trace will happen even on
instructions that normally would not cause a TO mode trace. Since

this may actually help in debugging and because it was not possible
to do anything else, this method of operation is deemed acceptable.

Another issue with the 68040 is that WRITE faults happen xafterx the
instruction has executed. (Except for MOVEM) In fact, it is common
for the 68040 to execute one or more extra instructions before the
WRITE fault is executed. This design makes the 68040 much faster,
but it also makes the Program Counter value that Enforcer can report
for the fault much less likely to be pointing to the instruction
that caused it. The worst cases are sequences such as a write fault
followed by a branch instruction. In these cases, the branch is
usually already executed before the write fault happens and thus the
PC will be pointing to the target of the branch. There is nothing
that can be done within Enforcer to help out here. You will just
need to be aware of this and deal with it as best as possible.

Along with the above issue, is the fact that since a write fault may
be delayed, a read fault may happen before the write fault shows up.
Internally, enforcer does not do special processing for these and
they will not show up. Since another hit was happening anyway, it
is felt that it is best to just not report the hit. Along the same
lines, the hit generated from a MOVEM instruction may only show as a
single hit rather than 1 for each register moved.

On the Amiga, MOVE16 is not supported 100%. Causing an Enforcer hit
with a MOVE16 will cause major problems and maybe cause Enforcer or
your task to lock. Since MOVEl6 is not supported, this is not a

major issue. Just watch out if you are using this 68040
instruction. (Also, watch out for the 68040 CPU bug with MOVE16)
The functions CachePreDMA (), CachePostDMA (), and CacheControl() are

patched when the 68040 MMU is turned on by Enforcer. These
functions are patched such the issues with DMA and the 68040
COPYBACK data caches are addressed. The

68040.1library

normally

Enforcer 22 /73

deals with this, however since Enforcer turns on the MMU, the method
of dealing with it in the older

68040.1library

will not work. For this
reason, Enforcer will patch these and implement the required fix for
when the MMU is on. When Enforcer is asked to exit, it will check
if it can remove itself from these functions. If it can not, it
will ignore the request to exit. If Enforcer was run from the CLI,
it will print a message saying that it can not exit when the attempt
is made.

These patches are not needed in V37.30 or better of
68040.1library

1.17 notes6

Enforcer, on the 68060, xrequiresx that the
68060.1library
be
installed. Due to the fact that various possible
68060.1library
versions may exist, Enforcer tries to not second guess it.
Thus, Enforcer assumes that the
68060.1library
has all of the
same functionality as V37.30 or better of the
68040.1library

It turns out that some of the 68060 libraries do not have the
same functionality of the

68060.1library

One common library

has elected not to handle Pre/Post DMA MMU table operations
when Enforcer installs its MMU table. This results in some
DMA/Cache interactions. Enforcer can not work around this
problem safely. If you happen to have a 68060.library with
version 2.1 (19.07.96) you may be able to patch it to not
have this problem. At offset $09BE there should be the
4-byte sequence $20 6D 00 04 Changing this to $4E 7A 88 06
will let it handle Enforcer’s MMU tables too. (The same
patch may work in other versions of the library)

For implementers of

68060.1library

, see my notes as to what
had to be done in

68040.1library

for correct operation.

Note that this does not mean that Enforcer needs this. The Amiga
system needs this to operate correctly. Enforcer just may
cause these problems to become more evident. The notes are only

in the AmigaGuide version of the Enforcer documentation.

Enforcer

23/73

The 68060 exception model is full-restart, which means that
all instructions are re-run. Both reads *andx writes.

This means that Enforcer can not tell you what the data
that would be written is, unlike the 68040 and earlier CPUs.
So, the output for a write will not include the data that
was to be written. This does mean that faults happen
before the instruction is executed (usually) and thus the
reported PC will be more exact. This restart model also
means that if an real bus-fault happens, Enforcer will be
unable to do much other than let it happen. (The same 1is
true for reads on the 68040) Enforcer maps all addresses
as either valid based on system configuration or invalid.
This is so that no address should cause a bus fault unless
the system configuration is incorrect and an address that
was marked valid actually causes a fault.

Be sure to read the

68040 notes

as the 68060 is a superset
of much of these notes.

Due to the complexity of emulating access to lower memory and
the fact that the 68060 was introduced well after V39 kickstart,

it is highly recommended that you use V39 or better with 68060 CPUs.

This mainly has to deal with lower 4K of memory. As of V38 of
exec.library, 68040/68060 processors would map out the lower 4K
of RAM rather than just 1K. This was required since the newer
CPUs did not have page sizes less than 4K.

It turns out that some 68060 CPU cards also have other hardware
on them. This is not a problem, unless this hardware does not
autoconfigure. Enforcer needs to know about hardware in the
system so it can map the MMU to that hardware. If the hardware
is not true Amiga AutoConfig (as in no expansion.library entry)
then Enforcer has no way of knowing it exists.

A common location for such hardware control registers to be
placed is in the reserved $00F00000 address range (known as
F-Space). This 512K space was reserved for future Kickstart
growth. It also has some magic in it so that you can wedge
special startup routines there for things like 68060 cards.
At least one vendor is doing all of this correctly and

has even made sure that expansion.library knows about the
hardware that is located in the $00F00000 address range.

If, when running Enforcer, your machine does lock up *andx

when you run Enforcer with the VERBOSE option it does not

say that the $00F00000 address range is a "board address"”

then you may wish to try the FSPACE option to see if this

is the reason. If this does not fix the problem, you more

than likely have either a real bug or some other non-AutoConfig
hardware in your system.

1.18 cpu_library

Enforcer

24 /73

The original concept behind the 68040.library was to move certain

system support routines into CPU specific libraries. The goal
was to have the Kickstart ROM make the system boot reliably but
not to worry about instruction emulation, complex cache control,
or address space manipulation.

This became an issue back when I was first working on prototype
68040 CPUs at Commodore. We already knew that the FPU (floating
point unit) was going to cause problems since many of the more
complex instructions were now going to need to be emulated in
software. Plus, the complexity of a copy-back cache meant that
some interesting cache control issues were going to come up.

The first cut at the 68040.library that became public was V37.10.
(Not counting version sent to developers during beta) This library
had the optimized FPU routines (updated from those that Motorola
wrote) plus a number of critical patches to the system to enable
more stable operation with the caches turned on and with copyback
mode enabled.

These

patches

were mainly to cover cases where code had not been
flushing caches after having generated or loaded new code. The

cases were found by looking at example source and shipping products
that we needed to keep running and finding the safest and least
impact way of supporting them. If you are writing a new CPU
library, for example 68060.library, please read about these

patches

along with the section on

COPYBACK mode and DMA

After working the V37.10 version of the library for a while we
noticed a few very rare crashes when doing DMA and CPU processing
of related data. In fact, it was when SAS/C started to do ASYNC
source file loading that it became most noticeable. (When I say
that, I mean that once a week or so a 68040 Amiga with DMA SCSI
would crash while compiling.)

After thinking about what is really going on, I determined that
there was a rare but very dangerous interaction between DMA and
COPYBACK caches. The interaction and the fix is described in
detail in the section on

COPYBACK mode and DMA

The fix was

implemented in V37.30 of 68040.library and Enforcer does a crude
version of this fix if a pre-37.30 of 68040.library is found.

In addition, V37.30 also implemented a fix for problems related
to hardware devices that live in Zorro-III space. This fix is
directly related to the
COPYBACK mode and DMA
fix.
Details of why this is needed will not be described here. I
wrote a number of AmigaMail articles on the issues of hardware

Enforcer

25/73

and 68040 systems. The end result is that the MMU must be used

to make 68040 (and 68060) systems operate correctly. 68040.library
does this. (And 68060.1library will also need to do this.)

The reason is that non-cacheable hardware addresses must be

mapped by the MMU as non-cached otherwise very bad things

will happen.

The 68060.library concept continues this design but Commodore

was falling apart and I left before prototype 68060 CPUs were
available. As such, other people have produced 68060.1library
versions that hopefully have incorporated all of the issues
learned in the development of the 68040.library. Since there

is more than one 68060.library, Enforcer can not know if to

patch it or not. As such, Enforcer assumes that the 68060.library
has correctly handled the issues that V37.30 of 68040.library.

1.19 cpu_patches

The following patches are made by

68040.1library

in order to
help keep software working. The descriptions and the code
to the patch are given here, however the code is not 100%
complete and requires that the programmer put this into the
correct places in the CPU library initialization code,
after the correct checks as to if the library should initialize.

Note that on the CachePreDMA and CachePostDMA patches, these
functions were design specifically for this purpose (along
with virtual memory mapping, which I did not have the chance
to complete before Commodore started to fall to pieces.)

Note also that the CachePreDMA/CachePostDMA patches are those
that are described in the

COPYBACK mode and DMA
link.

; CachePreDMA

; This adds the special patch to make 68040 and DMA devices
; work with CopyBack modes turned on...

PRINTF <’Installing CachePreDMA() patch’>

lea NewCachePreDMA (pc) , a0

move.l a0,do ; Get pointer to new routine
move.l a6,al ; Get library to be patched
move.w #_LVOCachePreDMA, a0 ; Get LVO offset...

CALLSYS SetFunction ; Install new code...

; CachePostDMA

; This adds the special patch to make 68040 and DMA devices
; work with CopyBack modes turned on...

Enforcer

26/73

4

4

4

4

4

4

4

14

4

PRINTF
lea
move.l
move.l
move.w
CALLSYS

CacheControl

<’Installing CachePostDMA () patch’>

NewCachePostDMA (pc) , a0

a0,do ;
a6,al ;
#_LVOCachePostDMA, a0 ;
SetFunction ;

Get pointer to new routine
Get library to be patched
Get LVO offset...

Install new code...

It fixes the return values from CacheControl to correctly return

the BURST ENABLE bit if the cache bit is on. (68040 bursts all
caches) It also deals with the cache settings vs DMA.

PRINTF <’Installing CacheControl () patch’>

lea NewCacheControl (pc), al

move.l a0,do ; Get pointer to new routine

move.l a6,al ; Get library to be patched

move.w #_LVOCacheControl, a0 ; Get LVO offset...

CALLSYS SetFunction ; Install new code...
AddLibrary

This fixes programs/libraries that do

MakeLibrary ()

PRINTF
lea
move.l
move.l
move.w
CALLSYS
lea
move.l

Closelibrary

not use

to generate the library structure.

<’Installing AddLibrary ()
NewAddLibrary (pc), a0

a0,do ;
a6,al ;
#_LVOAddLibrary, a0 ;
SetFunction ;
OldAddLibrary (pc), al ;

do, (a0) i

patch’>

Get pointer to new routine
Get library to be patched
Get LVO offset...

Install new code...

Get storage slot...

Save old code address...

This fixes arp.library on 68040 machines since it
places some code onto the stack and then runs it to close

a library...

PRINTF
lea
move.l
move.l
move.w
CALLSYS
lea
move.l

AddDevice

This fixes programs/libraries that do

MakeLibrary ()

PRINTF
lea
move.l

<’Installing CloseLibrary () patch’>

NewCloseLibrary (pc), a0l

a0,do ;
a6,al ;
#_LVOCloseLibrary, a0 ;
SetFunction ;
OldCloselibrary (pc),al ;
do, (a0) ;

Get pointer to new routine
Get library to be patched
Get LVO offset...

Install new code...

Get storage slot...

Save old code address...

not use

to generate the library structure.

<’Installing AddDevice /()
NewAddDevice (pc), a0
a0,do ;

patch’ >

Get pointer to new routine

Enforcer

27173

4

4

4

14

4

move.l a6,al
move.w #_LVOAddDevice, al
CALLSYS SetFunction
lea OldAddDevice (pc), a0
move.l dO, (a0)

AddResource

Get library to be patched
Get LVO offset...

Install new code...

Get storage slot...

Save old code address...

This fixes programs/libraries that do not use

patch’>

Get pointer to new routine
Get library to be patched
Get LVO offset...

Install new code...

Get storage slot...

Save old code address...

CacheClearU() after generating the resource.
PRINTF <’Installing AddResource ()
lea NewAddResource (pc), a0
move.l a0,do
move.l a6,al
move.w #_LVOAddResource, a0
CALLSYS SetFunction
lea OldAddResource (pc), al
move.l dO, (a0)
AddTask

This fixes programs that install the code into memory

without flushing the caches.
the most common problem like this:
for calls to CreateProc()

PRINTF <’Installing AddTask ()
lea NewAddTask (pc), a0
move.l a0,do
move.l a6,al
move.w #_LVOAddTask, a0
CALLSYS SetFunction
lea OldAddTask (pc), al
move.l dO, (a0)

AddIntServer

Once again,

installed as a server for the interrupts.

This happens to also fix
Fake seglist generation
(A trick needed in pre-2.0 days)

patch’>

Get pointer to new routine
Get library to be patched
Get LVO offset...

Install new code...

Get storage slot...

Save old code address...

people had generated code that was then

This should

be a very minor hit since very few call AddIntServer ()

PRINTF <’Installing AddIntServer ()
lea NewAddIntServer (pc), al
move.l a0,do
move.l a6,al
move.w #_LVOAddIntServer, al
CALLSYS SetFunction
lea OldAddIntServer (pc),al
move.l dO, (a0)

SetIntVector

Same issues as AddIntServer above...

PRINTF

lea NewSetIntVector (pc),al

<’Installing SetIntVector ()

patch’>

Get pointer to new routine
Get library to be patched
Get LVO offset...

Install new code...

Get storage slot...

Save old code address...

patch’ >

Enforcer

28/73

move.l a0,do ; Get pointer to new routine
move.l a6,al ; Get library to be patched
move.w #_LVOSetIntVector, al ; Get LVO offset...

CALLSYS SetFunction ; Install new code...

lea OldSetIntVector (pc),al ; Get storage slot...

move.l dO, (a0) ; Save old code address...

; Now, patch input.device so that a IND_ADDHANDLER will flush
; the caches. (Arg! But this is a big payoff)
7
PRINTF <’Installing input.device/IND_ADDHANDLER patch’>
; First, we need to find input.device on the list

lea DevicelList (a6),a0 ; Get list structure

lea InputName (pc),al ; Get input.device string
CALLSYS FindName ; Find it on the list

move.l dO0,al ; This is the device we patch
tst.1l do ; Check if NULL

beqg.s NoINDPatch ; If NULL, no Patch...

; We patch BeginIO in input.device to check for ADDHANDLER
; as the command. Since many tools copy up code for use as
; input handlers and just ADDHANDLER them, this will fix

; all of those caching issues.

lea NewBeginIO (pc),al ; Get new code

move.l a0,doO ; address for SetPatch...
move.w #DEV_BEGINIO, a0 ; LVO offset for BeginIO...
CALLSYS SetFunction ; Install it...

lea 01ldBeginIO (pc),al ; Save old code address
move.l dO, (a0) ; ...for the patch.

; continue with our work...
*
R R R I I I b b b b b b b S Sh 2h dh g A b b b b b b b b Sh b Sh S S I 2 b b b b b b b b Sh Sh Sh S I 2 b b b b b b b Sb S Sh dh dh 2 g S b b b b b b dh (Sh 2h Sh (Sh g 4
*
*xxxxxxxxx*x Now for the implementation:
*
InputName: dc.b "input.device’, 0 ; For patching input.device
CNOP 0,2
R I b b b b 2 b b b b b 2 b A b b b b b b b b b b b 2 b b b b b b b b b I b b b b b b b b b b b b b b b b b I b b b b b b b b b b b b b b b db b b b b b b
*
* This is the MMU frame. NULL on systems without MMU setup.
*
MMUF rame : dec.1 0 ; MMU frame...
*
R I b b 4 b 2 b b b b b I b A b b b b b b b b b b b b b b g b b b b b I b b b b b b b b b b b A b b b b b b b b b b b db b db b b b b b b b db b b b b b e 4
*
* AddLibrary patch code
*

OldAddLibrary: dc.1l 0 ; Storage for old
NewAddLibrary: move.l OldAddLibrary(pc),-(sp) ; Set so RTS to old code
move.l al,-(sp) ; Only Al is needed...
CALLSYS CacheClearU ; Clear the caches
move.l (sp)+,al ; Restore
rts

*

R R I S I I I I S I S b I I R b I I b b R b I I S I R b I b b b S Sh I I b I I b b I b b I SR b I b b I b b I Sh b b b I b b i b Sh o 2b e

Enforcer

29/73

IFNE ARP_FIX
*

* Closelibrary patch code
*

OldCloselLibrary:
dc.1 0

NewCloseLibrary:
move.l 0OldCloselLibrary (pc),
move.l al,-(sp)
CALLSYS CacheClearU
move.l (sp)+,al
rts

*

ENDC

*

- (sp) ;

; Storage for old

Set so RTS to old
; Only Al is needed...

; Clear the caches

; Restore

KK A AR A A A A AR A A A A A A A A AR A A A A A IR A IR A A A A A I A A I A A I A A A A A A I A A I A A A A A A A A A I A A A A AR A AR A Ak Ak

*

+ AddDevice patch code
*

OldAddDevice: dc.1 0
NewAddDevice: move.l OldAddDevice(pc),-(sp) ;
move.l al,-(sp)
CALLSYS CacheClearU
move.l (sp)+,al
rts

*

; Storage for old

Set so RTS to old code
; Only Al is needed...

; Clear the caches

; Restore

KA AR A A AR A AR A A A A I A A A A A A A A I A A I A I A AR I A A I A A I A XA A A I A A I A A I A A I A A A A AR A A A A A A Ak Ak

*

* AddResource patch code
*

OldAddResource: dc.1l 0
NewAddResource: move.l OldAddResource (pc),—
move.l al,-(sp)
CALLSYS CacheClearU
move.l (sp)+,al
rts

*

; Storage for old
;Set so RTS to old code
; Only Al is needed...
; Clear the caches
; Restore

(sp)

KA A KRR A A A A A A A A I A AR A AR I AR A A A I A A I A I A A A I A A I A A I A AR A A A I A A I A A I A A I A A hA A A A A A A A Ak bk Ak hk

*

* AddTask patch code
*

OldAddTask: dc.1 0
NewAddTask: move.l OldAddTask (pc),—(sp)
move.l al,-(sp)
CALLSYS CacheClearU
move.l (sp)+,al
rts

*

; Storage for old

; Set so RTS to old code
; Only Al is needed...

; Clear the caches

; Restore al

R R IR I e A b S b b db b 2 db b S db b b db b AR b db b b SR S b db Ib b 2 Ib b Jh Sb b d Ib b 2 Ib b 2 2b b db b b dh b b db b S db b b db I b db Sb b 2h 2b b b Sb b db 9 4

*
* AddIntServer patch code
*
OldAddIntServer:
dc.1 0
NewAddIntServer:
move.l

OldAddIntServer (pc), - (sp)

; Storage for old

; Set so RTS to old code

Enforcer

30/73

movem.1l d0/al, - (sp) ; Only DO/Al are needed...
CALLSYS CacheClearU ; Clear the caches
movem.1l (sp)+,d0/al ; Restore al

rts

*

R R IR I S b S b b S Sh b 2 Sh b S dh b dh b db b b db b b dh S b db Sb b S b b 2h Sh b S Sb b d b b S Sh b dh b b dh b b b b dh b b dh Sb b db Sb b dh S b dE Sb b db b 4
*

* SetIntVector patch code

*

OldSetIntVector:
dec.1 0 ; Storage for old
NewSetIntVector:
move.l OldSetIntVector (pc),-(sp) ; Set so RTS to old code
movem.1l d0/al, - (sp) ; Only DO/Al are needed...
CALLSYS CacheClearU ; Clear the caches
movem.l (sp)+,d0/al ; Restore al
rts

*
R IR b b 4 b 2 b b b b b b b A b b b b b b b b b A b b b b b b b b b b I b b b b b b b b b b b b b b b b b b b d b b b b b b b b b b b b b db b b b b i
*
x input.device BeginIO patch code to trap/flush on IND_ADDHANDLER
*
01ldBeginIO: dc.1 0 ; Storage for old
NewBeginIO: move.l O0ldBeginIO(pc),-(sp) ; Set so RTS to old code
; Now, check if it is IND_ADDHANDLER
cmp . w #IND_ADDHANDLER, IO_COMMAND (al)

bne.s Not_ADDHANDLER ; If not ADDHANDLER, skip...
movem.l al/a6,-(sp) ; save these

move.l _AbsExecBase, ab ; Get EXECBASE

CALLSYS CacheClearU ; Clear the caches

movem.l (sp)+,al/a6 ; Restore...

Not_ADDHANDLER: rts
*
R R R I I I b b b b b b Sh ah 2h Sh dh 4 b b b b b b b b b Sh Sh Sh S S A 2 b b b b b b (b b Ih Sh dh S I 2 b b b b b b b Sb b Sh Sh dh 2 S b b b b b b b dh (Sh 2h Sh (Sh g 4
*
NAME
CachePostDMA - Take actions after to hardware DMA (V37)

SYNOPSIS
CachePostDMA (vaddress, &length, flags)
a0 al do

CachePostDMA (APTR, LONG =, ULONG) ;

FUNCTION
Take all appropriate steps after Direct Memory Access (DMA). This
function is primarily intended for writers of DMA device drivers. The

action will depend on the CPU type installed, caching modes, and the
state of any Memory Management Unit (MMU) activity.

As implemented
68000 - Do nothing
68010 - Do nothing
68020 - Do nothing
68030 - Flush the data cache
68040 - Flush matching areas of the data cache
???7?27? — External cache boards, Virtual Memory Systems, or

p o S . SR S S S S S S S N S R S S S N

Enforcer

future hardware may patch this vector to best emulate
the intended behavior.

With a Bus-Snooping CPU, this function my end up
doing nothing.

INPUTS
address - Same as initially passed to CachePreDMA
length - Same as initially passed to CachePreDMA
flags - Values:
DMA_NoModify - If the area was not modified (and
thus there is no reason to flush the cache) set
this bit.
SEE ALSO

exec/execbase.i, CachePreDMA, CacheClearU, CacheClearE

KRR AR A A A A A AR A A A A A A A A A A A AR A A A A A I A A I A A I A A A A A A I A A I A A A AR I A A I A A I A Ak A A A A Ak Ak Ak, k

Replace CachePostDMA to handle the 68040 CopyBack vs DMA problem...

This is a real nasty problem: We have to watch out for DMA to memory
while the CPU is accessing memory within the same cache line.

This all mixes in with the CacheControl function since what we

will do is to have PreDMA turn off CopyBack mode and PostDMA

turn it back on... (only if needed as CacheControl () may have

been called too... arg!!!) TIf we have an MMU we will play

with the MMU tables...

b S . S I S . S T S . S S S S S S S . S T A e

NewCachePostDMA:
btst.l #DMAB_ReadFromRAM, d0O ; Check if READ DMA
bne.s dma_Caches ; If so, skip...
move.l a0,dl ; Get address...
or.1 (al),dl ; or in length...
and.b #S0F,dl ; Check for non-aligned...
beq.s dma_Caches ; Don’t count if aligned...

*

Now, we check if we can do the MMU trick...

move.l MMUFrame (pc),dl ; Get MMU frame
bne.s On_MMU_Way ; Do it the MMU way...
*
lea Nest_Count (pc),al ; We trash al...
subg.l #1, (al) ; Subtract the nest count...
bra.s dma_Caches ; Do the DMA work...

*

* Ok, so we have an MMU and need to deal with turning on the pages
*

On_MMU_Way: move.l a0, - (sp) ; (result, fake)
move.l a4,-(sp) ; Save a4
lea On_MMU_Page (pc), a4 ; Address of Cache ON code
bra.s MMU_Way ; Do the common code...

*

KK R AR R A AR A A A A AR A A A A A A A A A A A AR A AR A A A A A AR A AR A AR A A AR A AR A AR A AR A A AR A AR A AR A A AR A ARk kKK

NAME
CachePreDMA - Take actions prior to hardware DMA (V37)

* % o

Enforcer 32/73

SYNOPSIS
paddress = CachePreDMA (vaddress, &length, flags)
do a0 al do

APTR CachePreDMA (APTR, LONG =*, ULONG) ;

INPUTS
address - Base address to start the action.
length - Pointer to a longword with a length.
flags - Values:
DMA_Continue - Indicates this call is to complete
a prior request that was broken up.
RESULTS
paddress— Physical address that coresponds to the input virtual

address.

&length - This length value will be updated to reflect the contiguous
length of physical memory present at paddress. This may
be smaller than the requested length. To get the mapping
for the next chunk of memory, call the function again with
a new address, length, and the DMA_Continue flag.

b S S . S S S S S . N S S . S I S I

Ak Ak hkhk bk hkhkhk Ak hhkhhk ko hkhk kA h kA h kA ko hkkh kA hk kA h kA bk hkhkhkhkhkh ko hkhkhkhkhhkrhhkrhhkhkhhkdhhkhkhkhkkhkhkxk*x*x
*

* Replace CachePreDMA to handle the 68040 CopyBack vs DMA problem...
*

NewCachePreDMA:
btst.l #DMAB_Continue,d0 ; Check if we are continue mode
bne.s ncp_Continue ; Skip the Continue case...
btst.l #DMAB_ReadFromRAM, d0 ; Check if READ DMA
bne.s ncp_Continue ; Skip if read...
move.l a0,dl ; Get address...
or.1l (al),dl ; or in length...
and.b #S0F,dl1 ; Check of non-alignment
beq.s ncp_Continue ; Don’t count if aligned

*

Now, we check if we can do the MMU trick...

move.l MMUFrame (pc),dl ; Get MMU frame...
bne.s Off_MMU_Way ; If so, do MMU way...
*
lea Nest_Count (pc),al ; Get al...
addg.l #1, (al) ; Nest this...
ncp_Continue: move.l a0,do ; Get result...
dma_Caches: move.l dO,-(sp) ; Save result...
ncp_DoWork: moveq.l #0,d0 ; Clear bits
moveqg.l #0,d1 ; Clear mask
bsr.s NewCacheControl ; Do the cache setting/clear
move.l (sp)+,d0 ; Restore dO
rts ; Return...
*
* Ok, so we have an MMU and need to deal with turning off the pages
* given...
*
Off_MMU_Way: move.l a0, - (sp) ; Save result

move.l a4,-(sp) ; Save a4

Enforcer 33/73

lea Off_MMU_Page (pc), a4 ; Address of Cache OFF code
*
MMU_Way : move.l a5, - (sp) ; Save ab
lea Do_MMU_Way (pc) ,ab ; Get addres of code
CALLSYS Supervisor ; Do it...
move.l (sp)+,abd ; Restore ab
move.l (sp)+, a4 ; Restore a4
bra.s ncp_DoWork ; Return with result on stack

*

KRR A AR A AR A AR A A A A AR A A A A A AR A AR A AR A A A A A AR A AR A AR A A AR A AR A AR A A AR A AR A AR A AR A A AR A A Ak kK

*

* NAME
* CacheControl - Instruction & data cache control
*
* SYNOPSIS
* o0ldBits = CacheControl (cacheBits, cacheMask)
* DO DO D1
*
R I b b 4 b 2 b b b b b b b A b b b b b b b b b A b 2 b b b b b b b b b I b b b b b b b b b b b b b b b b b b b d b b b b b db b b db b b b db b b b b b e
*
* This new cache control completely replaces the ROM version.
* There is no reason to support the other chips here.
* If there was an external cache, it would be handled here...
*
NewCacheControl: movem.1l d2/d3, - (sp) ; Save...
and. 1l dl,do ; Destroy irrelevant bits
not.1 dl ; Change mask to preserve bits
move.l ab5,al ; Save ab...
lea.l ncc_Sup (pc),a5 ; Code that runs in supervisor
CALLSYS Supervisor ; Do it...
move.l d3,dO ; Set return value...
movem.l (sp)+,d2/d3 ; Restore...
rts ; Done...

*

* Some storage for these features...
*

cnop 0,4 ; Long align them...
Base_Cache: dec.1 0 ; Base cache settings...
Nest_Count: dc.1l 0 ; Nest count of the cache...
*
* dO0-mask dl-bits d2-scratch d3-result
* al-Saved ab5...
*
ncc_Sup: or.w #50700, SR ; DISABLE

movec CACR, d2 ; Get cache control register

and.1l #CACRF_040_ICache!CACRF_040_DCache,d2 ;!BIT ASUMPTIONS!
* ;10987654321098765432109876543210
* ;DO0000000000O0O0O00INOO0O000000000000

swap d2 ; I000000000000000D0O0O0O0O0O0OO0O0O0O0O0O000 CACRF_040

ror.w #8,d2 ;I00000000000000000000000D0O0O0O0OO0O0O CACRF_040
rol.1l #1,d2 ;00000000000000000000000D0O0C0OOOO0OI CACRF_040

* Add in the "ghost" cache setting...

or.1l Base_Cache (pc),d2 ; Base cache mode...

*

Now, set the burst modes too... (040 always bursts the cache)

Enforcer

34/73

*

ncc_NoCB:
*
* Now, mask out

*

*

Now store the

*

Now, check if

ncc_Normal:

Now, take the

*

move.l d2,d3 ; Move it over...
rol.l #4,d3 ; Shift cache info into burst info
or.1l d3,d2 ; Store with the burst bits as needed

Mirror the Data Cache into the CopyBack bit...

btst.l #CACRB_EnableD,d2

beqg.s ncc_NoCB ; If no data cache, no copyback...
bset.l #CACRB_CopyBack,d2
move.l d2,d3 ; Set result: old cache settings

what we want to change and change it...

and. 1l dl,d2 ; Mask out what we want to change...
or.l do,d2 ; Change those...

"asked for" new setting in Base_Cache...

move.l #CACRF_EnableD, d0 ; Get data cache...
and.1l d2,do ; Mask it...
move.l dO,Base_Cache-ncc_Sup(ab) ; Store it...

data cache should be off due to DMA...

tst.1l Nest_Count (pc) ; Check for PreDMA nest
beq.s ncc_Normal ; If not, we just do it...
bclr.l #CACRB_EnableD,d2 ; If set, we don’t do DCache

68030 settings and go back to 68040 settings...

;10987654321098765432109876543210

7 XXX XXX KXKXXKXXXXXKXKXXXX XXX KXDXXXXXXXT
ror.1l #1,d2 7 IXXX XX KK KK KK KK XK XK KX KX KXKXDXKXXKXKXKXX CACRF_040
rol.w #8,d2 7 IXXX XXX KKK KKXKKXXKXDXXKXKXXKXKXKXKXXKXKXKXKXKX CACRF_040
swap d2 7 DXXX XX KX KX XX XX XX IXXKXXXXKXXKXXKXXXKXX CACRF_040
and.1l #CACRF_040_ICache!CACRF_040_DCache,d2 ;!BIT ASUMPTIONS!

* All we need to do is play with the internal cache settings...

*

ncc_NoECache:

*

nop ;68040 BUG KLUDGE. Mask 14D43B
cpusha BC ; Push data and instruction cache...
nop ;68040 BUG KLUDGE. Mask 14D43B
movec d2,CACR ; Set the new cache control reg bits
nop ;68040 BUG KLUDGE. Mask 14D43B
move.l al,ab ; Restore ab5...

rte ;rte restores SR

R R IR I e A b S b b db b b db b S db b b db b AR b db b b dR S b db I b 2h Ib b 2 Sb b b Sb b JE Ib b 2 db b Sb b b dh b e db b S db b b db I b db S b dh 2 b Jb Sb b db 9 4

The magic for

start and end
Input:

P S T

MMU based Pre/PostDMA calls...

This routine is the general page manager. It will deal with the

pages as needed.
a4 - Routine to manipulate the page
dl - MMU Frame

Enforcer

b S .

Do_MMU_Way:

Ok, so now
a6 -
ab -
ad -
do -
dl -
a0 -
al -

b S . SR S S S S S S S

Do_MMU_dO:

dmd_Loop:

a0 - Start address
*al- Size

a5 - Scrap...

d0 - SCrap...

a6 — ExecBase
move.l dl,ab
move.l a0,do
move.l dO,-(sp)
add.1l (al),do
bsr.s Do_MMU_dO
move.l (sp)+,d0
bsr.s Do_MMU_dO
rte

we are called as follows:

ExecBase

MMU Frame pointer
Routine to manipulate the page
Address which needs protection

Scrap
Scrap
Scrap

a0/al/d0/dl may

all be trashed :-)

moveqg.l #S0F,dl

and. 1l do,d1

beqg.s Do_MMU_RTS
move.l dO,-(sp)
bfextu d0{1:19},d0
move.l mmu_NestCounts (ab),dl
move.l dl,a0

move.l (a0),dl

beqg.s dmd_NoFind
cmp. 1 nc_Low (a0),do
bcs.s dmd_ Loop

cmp.l nc_High (a0),d0
bhi.s dmd_Loop

sub.1l nc_Low (a0),do0
lea nc_Count (a0),al
add.1l do, al

add.1l do, a1l

move.l (sp)+,d0
movec.l urp,al

bfextu d0{0:7},dl
asl.l #2,d1

add.1l di, a0

move.l (a0),dl

and.w #SFE00,d1
move.l dl,a0

bfextu d0{7:7},dl
asl.l #2,d1

add.1l di, a0

Get MMU Frame into ab5...
Get start address...
Save start address...
Calculate end address...
d0 is address; do it...
Get start again...

d0 is address; do it...
We be done...

Mask. .

Check for cache line address

If on line address, no-op.
Save address...

Get page number

Point at list head

Get into address register
Get Next pointer

Did not find it...

Are we above low?

Not this one...

Are we below limit?

Not this one...

Subtract low...

Point at start of space
Adjust for page offset
(#2 since they are words)
Restore address...

Get ROOT pointer...

Get the root index...

*4

Add to root pointer...
Get page entry

Mask into the page table
Store pointer...

Get the pointer index...
*4

Add to table pointer...

Enforcer

36/73

move.l (a0),dl ; Get page entry...
and.w #SFF00,d1 ; Mask to the pointer...
move.l dl,a0 ; Put into address register...
bfextu d0{14:6},dl ; Get index into page table
asl.l #2,d1 ; x4
add.l dl, a0 ; a0 now points at the page...
move.l (a0),dl ; Get page entry...
btst.l #0,dl ; Check if bit 0 is set...
bne.s dmd_skip ; If set, we are valid...
bclr.1l #1,d1 ; Check if indirect...
beq.s dmd_skip ; If not indirect, A0 is valid
move.l dl,a0 ; a0 is now the page entry...

dmd_skip: Jjmp (ad) ; Ok, so now do the page work

*

dmd_NoFind: move.l (sp)+,d0 ; Restore dO...

Do_MMU_RTS: rts ; Done...

*

* At this point we are being called as follows:

* a0 - Points to the page entry in the MMU table for the address

* al - Points at the WORD size nest count for this page in the MMU

* d0 - Scrap

* dl - Scrap

* STACK - Ready to RTS...

*

Off_MMU_Page: move .w (al),do ; Get the count...
addg.w #1, (al) ; Bump the count...
tst.w do ; Are we 07
bne.s Do_MMU_RTS ; If not, we already are nested
addg.l #3,a0 ; Point at last byte of long
cpusha dc ; Push the data cache before ATC
pflusha ; Flush the ATC...
bclr.b #5, (a0) ; Clear the copyback bit...
cpushl dc, (a0) ; Push the cache...
rts

*

* This routine is called just like Off_MMU_Page is...
*

On_MMU_Page: subg.w #1, (al) ; Drop count...
move .w (al),do ; Get count...
bne.s Do_MMU_RTS ; If not 0, still nested...
addg.l #3,a0 ; Point at last byte of long
pflusha ; Flush the ATC...
bset.b #5, (a0) ; Set the copyback bit...
cpushl dc, (a0) ; Push the cache...
rts

*

KA R A AR A AR A AR A A AR A AR AR A A AR A AR A AR A A A A A AR A AR A AR A A AR A AR A AR A A AR A AR A AR A ARk A Ak A Ak k kK%

1.20 copyback_dma

Copyback caches are wonderful things for CPU performance.
The main reason is that they let code modify data multiple
times before the CPU has to do the slow operation of writing
the data back into physical memory. The difference in
performance can be significant.

Enforcer

37/73

It does, however, mean that data is not written out to
physical RAM until the CPU really must. The longer the
CPU can keep the data in the cache, the more likely another
access to that data will happen and thus higher performance.

This all sounds fine until you get to DMA devices. That 1is,
devices that do work without bothering the CPU. These devices
are very good for performance since the CPU can continue to
deal with the programs that are running and let someone else
deal with simplistic tasks such as copying bytes to or from
disk drives, network cards, etc.

The first problem is easy to spot. Before starting a DMA
operation, the CPU’s caches need to be flushed. The reason
being that you want to make sure that the DMA device can see
the current/correct values in memory.

But, there is an even more evil problem lurking. This
problem is so evil that it many times goes unnoticed until
just the right set of conditions arrise.

The conditions are complex and yet devilishly simple...

First, a quick understanding of how the cache works will be
required. Caches (68030/68040/68060) have what are called
cache lines. These are 4 longwords that are controlled as

a set. The cache line corresponds to the size of the data
fetch burst size. Burst access to RAM happens, in the 680x0
family, 4 longwords at a time. This organization also
significantly reduces the complexity of the cache controller
and thus makes the cache even faster.

Now, starting with the 68040, caches changed in three ways.
First, they became much larger. From 256 bytes to 4096 bytes.
Second, in order to handle the larger caches, the cache
controller was changed to have only a single "dirty" flag
for a line rather than one per longword in the line. (Note
that this also fixed a bug that the 68030 had...)

Third, the caches grew a new mode called COPYBACK. This
new mode would mark the cache as dirty when a write happens
and then when the cache line was needed to cache some other
address, the CPU would write back (copyback) the data from
the cache line to RAM before caching the new data.

Ok, now the stange is set for the problem... You may already
see 1t, but if not, don’t feel bad as I did not catch it

right away either.

Let us look at a very simple (and silly) example. I will
draw some pictures to help make it easier...

pomm - pom - e pom - +
| 0x0000 | 0x0004 | 0x0008 | 0x000C |

The above is a cache line address 0x0000 to 0x000F. I drew

Enforcer 38/73

it with long-words due to resolution limits of ASCII :-)

Anyway, let us say that we started some DMA hardware that
was going to write to addresses 0x0000 and 0x0004. That

is, the first 2 longwords of this cache line. Think of this
as a "read" from, say, a DMA SCSI disk drive.

Now, I started this hardware working, and before doing
so, I call CachePreDMA () with the address and length
and it did the simple "flush" cache. Then I "Wait ()"
until the hardware signals me that it is done.

In the mean time, some other code gets a chance to run and

it happens to have memory address 0x0008 and 0x000C allocated
to it. When it wakes up, it writes something to 0x0008.

The CPU will notice that this is not in the cache and read

in a cache line which contains the address 0x0008. It then
writes the data to the cache line and marks the cache line
as dirty.

Meanwhile, the DMA device has now found the data and started
to DMA it to physical RAM...

Ah, but what is this? Are not addresses 0x0000 and 0x0004
in that newly created cache line? And even worse, 1s not the
cache line marked as dirty and in need of being written out?

So, now, the data changed in the physical memory. A cache
flush is needed to make sure that any changes to physical
memory is noticed by the cache. This is normal so far...

But here is where Copyback and sign single dirty bit come
in. The team up and cause something bad to happen.

When flushing the cache, the cache controller notices that
there is some data in this cache line that needs to be placed
into physical memory. Namely the data that the task wrote to
location 0x0008. However, the cache controller has no idea
what part of the line is "dirty" nor does it care since it
always does "burst" memory access. So, the cache controller
writes the cache line back to RAM... and right over the top
of the new data that was placed there by the DMA device!

Oh the horror of it! ©New data that was killed by the CPU
before anyone could have seen it.

The solution:
This was rather fun to find and even more fun to solve.

First, any DMA that started and ended at line bounderies
would never have this problem. That is, if the DMA was
always started at addresses that were multiples of 16
and were a multiple of 16 in length would not have a
problem with this. (Unless they played with the memory

Enforcer 39/73

as the DMA was happening, but that would cause problems
even without copyback.)

So, the fix does not need to be done unless the DMA starts
on a non-quad-longword address or is not a multiple of 16
bytes long.

The simple fix would have been to turn off all caches during
DMA operation. In fact, I tried that fix just to see if it
would work. However, the performance impact on software

that does lots of DMA (such as programs that do disk I/O)

was rather dramatic. (Try it yourself - turn off your caches
and see what happens to performance)

So, the trick is to minimise the area of disabled caches.
With the MMU turned on, I was able to disable the caches

for only those 4K pages where the DMA started and ended.
That is, the page where the DMA starts is cache disabled
and the page where the DMA ends is cache disabled. When the
DMA is completed, the pages are returned to normal.

Since multiple DMA devices can be in operation at the same
time, there is a need to keep a "nest count" for each page.
This nest count is kept independant of the MMU table since
tools such as Enforcer and Virtual Memory Systems would
need to move the MMU tables around and the fix would then
not work with the correct MMU table.

The code shown in the
patches
section implements most of
this support. The setup of some of the tables is left
out as it depends on the form of the MMU. The code deals
with 68040 MMU table structure and should work as is on
the 68060 CPU.

1.21 option_quiet

QUIET/S

This tells Enforcer not to complain about any invalid
access and to just build MMU tables for cache setting
reasons ——- mainly used in conjunction with an
Amiga BridgeBoard in a 68030 environment so that
the system can run with the data cache turned on.
In this case,

RUN >NIL: Enforcer QUIET
should be placed into the startup-sequence right
after SetPatch.

1.22 option_tiny

Enforcer

40/73

TINY/S

This tells Enforcer to output a minimal hit. The
output 1is basically the first line of the Enforcer
hit.

1.23 option_small

SMALL/S

This tells Enforcer to output the hit line, the
USP: line, and the Name: line. (This means that
no register or stack display will be output)

1.24 option_showpc

SHOWPC/S

This tells Enforcer to also output the two lines
that contain the memory area around the PC where
the hit happened. Useful for disassembly.
This option will not do anything if

QUIET

4

SMALL

or

TINY
output modes are selected.

1.25 option_stacklines

STACKLINES/K/N

This lets you pick the number of lines of stack
backtrace to display. The default is 2. If set
to 0, no stack backtrace will be displayed. There
is NO ENFORCED LIMIT on the number of lines.

1.26 option_stackcheck

STACKCHECK/S

This option tells Enforcer that you wish all of
the long words displayed in the stack to be checked
against the global seglists via

SegTracker

Enforcer

41/73

This will tell you what seglist various return
addresses are on the stack. If you are not
displaying stack information in the Enforcer hit
then STACKCHECK will have nothing to check.
If you are displaying stack information, then
each long word will be check and only those which
are in one of the tracked seglists will be
displayed in a

SegTracker

line.

The output will show the PC address first and
then work its way back on the stack such that you
can read it from bottom up as the order of calling
or from top down as the stack-frame backtrace.

1.27 option_aregcheck

AREGCHECK/S

This option tells Enforcer that you wish all of
the values in the Address Registers checked via

SegTracker
, much like
STACKCHECK

1.28 option_dregcheck

DREGCHECK/S

This option tells Enforcer that you wish all of
the values in the Data Registers checked via

SegTracker
, much like
STACKCHECK

1.29 option_datestamp

DATESTAMP/S

This makes Enforcer output a date and time with each
hit. Due to the nature of the way Enforcer must
work, the time can not be read during the Enforcer
hit itself so the time output will be the last time
value the main Enforcer task set up. Enforcer will
update this value every second as to try to not

Enforcer

42 /73

use any real CPU time. The time displayed in the
hit will thus be exact.

(Assuming the system clock is correct.)

The date is output before anything from the hit
other than the optional introduction string.

1.30 option_deadly

DEADLY/S

This makes Enforcer a bit nasty. Normally,

when an illegal read happens, Enforcer returns 0
as the result of this read. With this option,
Enforcer will return S$ABADFEED as the read data.
This option can make programs with Enforcer hits
cause even more hits.

1.31 option_fspace

FSPACE/S

This option will make the special $00F00000 address
space available for writing to. This is useful for
those people with $00F00000 boards. Mainly Commodore
internal development work —- should only be used

in that enviroment.

1.32 option_verbose

VERBOSE/S

This option will make Enforcer display information

as to the mapping of the I/0 boards and other
technical information. This information maybe useful
in specialized debugging.

1.33 option_led

LED/K/N

This option lets you specify the speed at which
the LED will be toggled for each Enforcer hit.
The default is 1 (which is like it always was)
Setting it to 0 will make Enforcer not touch
the LED. Using a larger value will make the
flash take longer (such that it can be noticed
when doing I/O models other than the default

Enforcer

43/73

serial output) The time that the flash will

take is a bit more than 1.3 microseconds times
the number. So 1000 will be a bit more than

1.3 milliseconds. (Or 1000000 is a bit more than
1.3 seconds.)

1.34 option_parallel

PARALLEL/S

This option will make Enforcer use the parallel port
hardware rather than the serial port for output.

1.35 option_rawio

RAWIO/S

This option will make Enforcer stuff the hit report
into an internal buffer and then from the main
Enforcer process output the results via the
RawPutChar () EXEC debugging LVO. Since the output
happens on the Enforcer task it is possible for a
hit that ends in a system crash to not be able to
be reported. This option is here such that tools
which can redirect debugging output can redirect
the Enforcer output too.

1.36 option_file

FILE/K

This option will make Enforcer output the hit report
but to a file insted of sending it to the hardware
directly or using the

RAWIO

LVO. A good example of
such a file is CON:0/0/640/100/HIT/AUTO/WAIT.
Another thing that can be done is to have a program
sit on a named pipe and have Enforcer output to it.
This program can then do whatever it feels like with
the Enforcer hits. (Such as decode them, etc.)
*NOTEx It is not a good idea to have Enforcer hits
go to a file on a disk as if the system crashes
during/after the Enforcer hit, the disk may
become corrupt.

Enforcer 44 /73

1.37 option_stdio

STDIO/S

This option will make Enforcer output the hit report
to STDOUT. This option only works from the CLI as it
requires STDOUT. It is best used with redirection or

pipes.

1.38 option_buffersize

BUFFERSIZE/K/N

This lets you set Enforcer’s internal output buffer
for the special I/0O options. This option is only
valid with the

RAWIO

r

FILE

, Or

STDIO

options.
The minimum setting is 8000. The default is 8000.
Having the right amount of buffer is rather
important for the special I/O modes. The reason
is due to the fact that no operating system calls
can be made from a bus error. Thus, in the
special I/0 mode, Enforcer must store the output
in this buffer and, via some special magic,
wake up the Enforcer task to read the buffer and
write it out as needed. However, 1f a task is
in Forbid() or Disable() when the Enforcer hit
happens, the Enforcer task will not be able to
output the results of the hit. This buffer lets
a number of hits happen even if the Enforcer task
was unable to do the I/0. If the number of
hits that happen before the I/0 was able to
run gets too large, the last few hits will either
be cut off completely or contain only partial
information.

1.39 option_intro

INTRO/K

This optional introduction string will be output
at the start of every Enforcer hit. For example:
INTRO="xNBad Program!" The default is no string.

Enforcer 45/73

1.40 option_priority

PRIORITY/K/N

This lets you set Enforcer’s I/0O task priority.
The default for this priority is 99. 1In some
special cases, you may wish to adjust this.
It is, however, recommended that if you are using
one of the special I/0O options (

RAWIO

r

FILE

, Or

STDIO
) that you keep the priority rather high.
If the priority you supply is outside of the

valid task priority range (=127 to 127) Enforcer
will use the default priority.

1.41 option_noalertpatch

NOALERTPATCH/S

This option disables the patching of the EXEC
Alert () function. Normally Enforcer will patch
this function to provide information as to what

called Alert () and to prevent the Enforcer hits
that a call to Alert () would cause.

1.42 option_on

ON/S

Mainly for completeness. If not specified, it
is assumed you want to turn ON Enforcer.

1.43 option_quit

QUIT=0OFF/S

Tells Enforcer to turn off. Enforcer can also be
stopped by sending a CTRL-C to its process.

1.44 output

Enforcer 46 /73

Example Enforcer output

03-Apr-93 21:26:18

WORD-WRITE to 00000000 data=4444 PC: 07895CA4

USP: 078D692C SR: 0000 Sw: 0729 (UO) (=) (=) TCB: 078A2690

Data: DDDDO00OO DDDD1111 DDDD2222 DDDD3333 DDDD4444 DDDD5555 DDDD6666 DDDD7777
Addr: AAAAQ000 AAAA1111 AAAA2222 AAAA3333 AAAA4444 AARAAS555 07800804 ———————-—
Stck: 00000000 07848E1C 00009C40 078A30BR4 BRBBRBBRB BBBRBBBB BBBBBBBB BBBBBBBB
Stck: BBBBBBRB BBRBRBRB BRBBBBBR BRBBRBBBB BBBBBBBB 078E9048 00011DA8 DEADBEEF
—-——=> 07895CA4 - "lawbreaker" Hunk 0000 Offset 0000007C

PC-8: AAAA1111 247CAAAA 2222267C AAAA3333 287CAAAA 44442A7C AAAAS555 31C40000
PC *: 522E0127 201433FC 400000DF FO9A522E 012611C7 OOCE4EAE FF7642B8 0324532E
Name: "New_Shell" CLI: "lawbreaker" Hunk 0000 Offset 0000007C

LONG-READ from AAAA4444 PC: 07895CAS8

USP: 078D692C SR: 0015 Sw: 0749 (UO) (F) (=) TCB: 078A2690

Data: DDDDO00OO DDDD1111 DDDD2222 DDDD3333 DDDD4444 DDDD5555 DDDD6666 DDDD7777
Addr: AAAAQ0000 AAAA1111 AAAA2222 AAAA3333 AAAA4444 AAAAS555 07800804 ———————-—
Stck: 00000000 07848E1C 00009C40 078A30R4 RBBRBBRB RBBRBBRBB BBBBBBBB BBBBBBEB
Stck: BBBBBBBRB BBRBRBRB BRBBBBBBR BRBBRBBBB BBBBBBBB 078E9048 00011DA8 DEADBEEF
—-——=> 07895CA8 - "lawbreaker" Hunk 0000 Offset 00000080

PC-8: 247CAAAA 2222267C AAAA3333 287CAAAA 44442A7C AAAAS5555 31C40000 522E0127
PC *: 201433FC 400000DF FO9A522E 012611C7 O0OCE4EAE FF7642B8 0324532E 01266C08
Name: "New_Shell" CLI: "lawbreaker" Hunk 0000 Offset 00000080

Here is a breakdown of what these reports are saying:
In the first report, the first line is the date stamp.

The first line of each report describes the access violation

and where it happened from. In the case of a WRITE, the data

that was being written will be displayed as well. If an instruction
mode access caused the fault, there will be an (INST) in the line.

The first line may also contain the BUS ERROR message. This will
be displayed when an address that is valid in the system lists
causes a physical bus fault during the access. This usually

will happen with plug-in cards or when a hardware problem causes
some form of system fault. Watch out, if this does show up, your
system may be unstable and/or unreliable.

The second line (starts USP:) displays the USER stack pointer (USP),

the status register (SR:), the special status word (SW:). It then
displays the supervisor/user state and the interrupt level. This
will be from (UO) to (U7) or (S0) to (S7) (S=Supervisor) Next

is the forbid state (F=forbid, —-=not) and the disable state (D or -)
of the task that was running when the access fault took place.
Finally, the task control block address is displayed (TCB:)

The next two lines contain the data and address register dumps from
when the access fault happened. Note that A7 is not listed here.
It is the stack pointer and is listed as USP: in the line above.

Then come the lines of stack backtrace. These lines show the
data on the stack. 1If the stack is in invalid memory, Enforcer will
display a message to that fact.

Enforcer 47 /73

If

SegTracker

was installed before Enforcer, the "-———>" lines
will display in which seglist the given addresses are in based on the
global tracking that

SegTracker

does. (See docs on

SegTracker

)
If no seglist match is found, no lines will be displayed.
One line will be displayed for each of the stack longwords asked
for (see the STACKCHECK option) and one line for the PC address of
the Enforcer hit. (The PC line is always checked for is

SegTracker

is installed.) The lines are in order: hit, first stack find,
second stack find, etc. This is useful for tracking down who
called the routine that caused the Enforcer hit.

Next, optionally, comes the data around the program counter when the
access fault happened. The first line (PC-8:) is the 8 long-words
before the program counter. The second line starts at the program
counter and goes for 8 long words.

The last line displays the name of the task that was running when
the access fault took place. If the task was a CLI, it will display
the name of the CLI command that was running. If the access fault
was found to have happened within the seglist of a loaded program,
the segment number and the offset from the start of the segment will
be displayed. (Note that this works for any LoadSeg()’ed process)

Note that the name will display as "Processor Interrupt Level x"
if the access happened in an interrupt.

25-Jul-93 17:15:06

Alert !! Alert 35000000 TCB: 07642F70 Usp: 07657C10

Data: 00000000 DDDD1111 DDDD2222 DDDD3333 0763852A DDDD5555 DDDD6666 35000000
Addr: AAAAQ0000 AAAA1111 AAAA2222 AAAA3333 AAAA4444 0763852A 07400810 —-——————-
Stck: 076385A0 00000000 0752EE9A 00002800 07643994 00000000 0762F710 076305F0
————> 076385A0 - "lawbreaker" Hunk 0000 Offset 00000098

This output happens when a program or the OS calls the EXEC Alert
function. Enforcer catches these calls and will display the alert
information as seen above. (With the date and time as needed)

See also the
Detail Example
for information.

1.45 findseg

/ *
* A simple program that will "find" given addresses in the SeglLists
*+ This program has been compiled with SAS/C 6.3 without errors or
* warnings.

Enforcer 48 /73

Compiler options:

DATA=FARONLY PARAMETERS=REGISTER NOSTACKCHECK
NOMULTIPLEINCLUDES STRINGMERGE STRUCTUREEQUIVALENCE
MULTIPLECHARACTERCONSTANTS DEBUG=LINE NOVERSION
OPTIMIZE OPTIMIZERINLOCAL NOICONS

0% % ok X % X%

Linker options:
FindSeg.o TO FindSeg SMALLCODE SMALLDATA NODEBUG LIB LIB:sc.lib

*

*/
#include <exec/types.h>
#include <exec/execbase.h>
#include <exec/libraries.h>
#include <exec/semaphores.h>
finclude <dos/dos.h>
#include <dos/dosextens.h>
#include <dos/rdargs.h>

#include <clib/exec_protos.h>
#include <pragmas/exec_sysbase_pragmas.h>

#include <clib/dos_protos.h>
#include <pragmas/dos_pragmas.h>

#include <string.h>
#include "FindSeg_rev.h"
#define EXECBASE (* (struct ExecBase xx)4)

typedef char (x __asm SegTrack (register __a0 ULONG,
register __al ULONG =x,
register __a2 ULONG x));

struct SegSem

{

struct SignalSemaphore seg_Semaphore;
SegTrack *seg_Find;

}i

#define SEG_SEM "SegTracker"
#define TEMPLATE "FIND/M" VERSTAG

#define OPT_FIND O
#define OPT_COUNT 1

ULONG cmd (void)

{

struct ExecBase *xSysBase;
struct Library *DOSBase;
struct RDArgs *rdargs;

ULONG rc=RETURN_FATL;
struct SegSem *segSem;
char *+*hex;

LONG opts [OPT_COUNT] ;

Enforcer 49 /73

SysBase = EXECBASE;
if (DOSBase = OpenlLibrary("dos.library",37))
{

memset ((char x)opts, 0, sizeof (opts));

if (!(rdargs = ReadArgs (TEMPLATE, opts, NULL)))
{
PrintFault (IoErr (), NULL);
}
else if (CheckSignal (SIGBREAKF_CTRL_C))
{
PrintFault (ERROR_BREAK, NULL) ;
}
else i1if (segSem=(struct SegSem *)FindSemaphore (SEG_SEM))
{
rc=RETURN_OK;
if (opts[OPT_FIND])
{
for (hex=(char *x)opts[OPT_FIND]; (xhex);hex++)
{
char «p;
ULONG val;
ULONG tmp([4];
ULONG c;

val=0;
p=xhex;
if (xp=='$’) p++; /* Support S$hex x/
while (xp)
{
c= (ULONG) *p;
if ((c>="a’) && (c<='f’)) c-=32;

c—="0" ;
if (c>9)
{

c—=7;

if (c<10) c=16;

if (c<16)

{
val=(val << 4) + c;
pt+;

}

else

{
val=0;
p=&plstrlen(p)];

/ *
* Ok, we need to do this within Forbid()
* as segments can unload at ANY time, including
* during AllocMem (), so we use a stack buffer...
*/

Forbid () ;

Enforcer 50/73

if (p=(*segSem->seg_Find) (tmp[0]=val, &tmp[2], &tmp[3]))
{
char Buffer[200];

stccpy (Buffer,p,200);
tmp[1l]=(ULONG)Buffer;
VPrintf ("$%081x - %s : Hunk %1d, Offset $%081x",tmp);

Now get the SeglList address by passing the
same pointer for both hunk & offset. Note
that this is only in the newer SegTracker

To test if this worked, check if the result
of this call is either a hunk or an offset.

% % ok X %

*/
(#segSem—>seg_Find) (val, &tmp[0], &tmp[0]);
/ %
* This "kludge" is for compatibility reasons
* Check if result is the same as either the hunk
= or the offset. If so, do not print it...
*/
if ((tmp[0]!=tmp[2]) && (tmp[O0]!=tmp[3]))
{
VPrintf (", SegList $%081x",tmp);

PutStr ("\n");

}
else VPrintf ("$%081x — Not found\n", tmp);
Permit () ;

}

else PutStr ("Could not find SegTracker semaphore.\n");

if (rdargs) FreeArgs (rdargs);
CloselLibrary (DOSBase) ;

}
else if (DOSBase=OpenLibrary ("dos.library",0))

{
Write (Output (), "Requires Kickstart 2.04 (37.175) or later.\n",43);
Closelibrary (DOSBase) ;

return(rc);

1.46 quotes

Some of my quotes that have been in my signatures in the past:
Quantum Physics: The Dreams that Stuff is made of. - Michael Sinz

"A master’s secrets are only as good as the
master’s ability to explain them to others" - Michael Sinz

Enforcer

51/73

"Can’t I just bend one of the rules?" said the student.
The Master just looked back at him with a sad expression. - Michael Sinz

From the home of the imaginary deadlines:
"It will take 21 weeks to do that project." - Michael Sinz

By doing the impossible one just proves the point
that one can not do the impossible. - Michael Sinz

Some other quotes that I have used but did not come up with:

When one does business in the vicinity of a gorilla, you
spend much of your time muttering, "Nice gorilla..."

HELP! I am starting to like it here...
Eloquence is vehement simplicity

Programming is like sex:
One mistake and you have to support it for life.

I multitask, therefor we are.

1.47 copyright

Enforcer - Copyright © 1992-1998 - Michael Sinz
All Rights Reserved

The original Enforcer was written by Bryce Nesbitt. It was instrumental
to the development of 2.04 and to the improvement in the quality of
software on the Amiga. It is Copyright © 1991 - Commodore-Amiga, Inc.

Enforcer V37 is a completely new set of code designed to provide even
more debugging capabilities across more hardware configurations and

with more options. Michael Sinz designed and developed Enforcer V37.

Enforcer and the tools and documentation in the Enforcer archive are
not public domain. They are Copyright © 1992-1998 - Michael Sinz.

Enforcer.guide - Copyright © 1993-1998 - Michael Sinz
Permission is hereby granted to distribute the Enforcer archive
containing the executables and documentation for non-commercial purposes

so long as the archive and its contents are not modified in any way.

Enforcer and related tools may not be distributed for profit.

| Michael Sinz |
\ I-NET: Enforcer@sinz.org |

Enforcer

52/73

| BIX: msinz or msinz@bix.com
| "Can’t I just bend one of the rules?"
\

The Master just looked back at him with a sad expression.

1.48 detailexample

Example
Enforcer
Hit: Click on the field

25-Jul-93 17:15:04

WORD-WRITE
to
00000000

data=0000
PC: 0763857C
-—--BUS ERROR--—-

USP:

07657C14
SR: 0004
SW: 04C1

(U0) (=) (=)
TCB: 07642F70

Data:

DDDDO00O0O
DDDD1111
DDDD2222
DDDD3333
0763852A
DDDD5555
DDDD6666
DDDD7777

Addr:

AAAAQ000
AAAATILLL
AAARN2222
AAAA3333
AAAA4444
0763852A
07400810

Stck:
00000000

said the student.

for explaination.

Enforcer 53/73

0752EE9A
00002800
07643994
00000000
076786D8
000208B0O
2EAC80EE

Stck:

487AFD12
486C82C4
4EBA3D50
4EBAEA28
4FEF0014
52ACE2E4
204D43EC
88BC203C

———>
0763857C

n

lawbreaker

n

Hunk 0000
Offset 00000074

PC-8:

2222263C
DDDD3333
280D2A3C
DDDD5555
2C3CDDDD
66662E3C
DDDD7777
31C00000

PC *:

4EAEFFTC
20144EAE
FF8811C1
01014EAE
FEF7621CO0
01024EAE
FF822E3C
35000000

Name:

"

Shell

" CLI: "
LawBreaker

n

Hunk 0000

Offset 00000074
And, for Alert hits:

Enforcer

54 /73

25-Jul-93
Alert
11

Alert

35000000

TCB: 07642F70

UspP: 07657C10

Data:

DDDD000O
DDDD1111
DDDD2222
DDDD3333
0763852A
DDDD5555
DDDD6666
35000000

Addr:

AAAAQ0000
AAAAL11LL
AAAA2222
AAAA3333
AARAA4444
0763852A
07400810

Stck:

076385A0
00000000
0752EE9A
00002800
07643994
00000000
0762F710
076305F0

———>
076385A0

lawbreaker

n

Hunk 0000

Offset 00000098

Note that
Enforcer

hit output is wvery configurable.
was produced with options:

SHOWPC

The above example hit

Enforcer

55/73

Enforcer output

DATESTAMP

STACKCHECK

STACKLINES=2

Here are some examples of different output configurations:

with the TINY option: (Commandline:
TINY
)

WORD-WRITE
to

00000000

data=0000

PC: 0763857C

Enforcer output with the SMALL option:

SMALL
)

WORD-WRITE
to
00000000

data=0000

PC: 0763857C

USP:

07657C14
SR: 0004
SW: 04C1

(U0) (=) (=)

TCB: 07642F70

Name:

"

Shell

" CLI: "
LawBreaker

n

Hunk 0000

Offset 00000074

Enforcer output with DEFAULT options:

WORD-WRITE
to
00000000

ENFORCER

(Commandline:

(Commandline:

ENFORCER

ENFORCER)

Enforcer 56/73

data=0000

PC: 0763857C

USP:

07657C14
SR: 0004
Sw: 04C1

(U0) (=) (=)

TCB: 07642F70

Data:

DDDD000O
DDDD1111
DDDD2222
DDDD3333
0763852A
DDDD5555
DDDD6666
DDDD7777

Addr:

AAAAQ0000
AAAAl1LL
RAAAA2222
AAAA3333
AARAA4444
0763852A
07400810

Stck:

00000000
0752EE9A
00002800
07643994
00000000
076786D8
000208B0O
2EAC80EE

Stck:

487AFD12
486C82C4
4EBA3D50
4EBAEA28
4FEF0014
52ACE2E4
204D43EC
88BC203C

———>
0763857C

Enforcer 57173

lawbreaker
"

Hunk 0000
Offset 00000074

Name :
"

Shell
" CLI: "
LawBreaker

n

Hunk 0000

Offset 00000074

1.49 output_datestamp

The date stamp field, if enabled, is at the start of the
Enforcer
hit.
The time is only exact to +/- 1 second.

1.50 output_write

This tells you that the
Enforcer
Hit was a READ from or WRITE to memory.
The possible writes are:

-— WRITE - - READ —-
BYTE-WRITE - 8-bit write BYTE-READ
WORD-WRITE 16-bit write WORD—-READ
LONG-WRITE - 32-bit write - LONG-READ
LINE-WRITE 68040 only LINE-READ

1.51 output_address

This field in the output shows the illegal address that was
accessed which triggered the
Enforcer
report.

1.52 output_writedata

Enforcer 58/73

On an illegal WRITE to memory, the value that was attempted to
be written will be displayed here. The size of this field

changes to match the size of the write. 68040 LINE writes are
not supported in this field. The 68060 does not support
this field.

1.53 output_pc

This field displays the program counter at the time of the MMU
trap of the invalid access. Note that this address is not always
the exact instruction that caused the hit. See the various
notes for your processor for more details.

General Notes
68020 Notes
68030 Notes

68040 Notes

68060 Notes

1.54 output_buserror

This field normally would never be seen by most people. It is generated
when a legal memory address causes a physical bus fault. This usually
can only happen when designing hardware or a part of the system hardware
has become unreliable. Watch out, if this does show up, your system may
be unstable and/or unreliable.

For more information on bus faults, see the Motorola CPU Hardware
Design handbook.

1.55 output_sr

This is the CPU status register as found on the MMU trap
stack frame. It contains the condition flags and the
current mode/etc.

1.56 output_sw

This is the special status word that is part of the MMU
trap frame. Check your CPU manuals for more details as
to what this word contains. Note that it is different

for the different versions of the 680x0 family.

Enforcer 59/73

Note that on the 68060 this is the upper WORD of the FSLW.

1.57 output_decode

This field contains special task information. This is
useful for determining what is going on at the time of the hit.

(U0) (=) (=)

N

| | +-— This will have a D if the task is DISABLE state

[+=— This will have a F if the task is FORBID state
[+———————— This is the processor IPL level (0 is normal code)
fo————— This is the processor state: U=user, S=supervisor

1.58 output_tcb

This is the address of the Task Control Block, also known
as the task structure. (See exec/tasks.h) This is used by

Enforcer
to tell you who caused the hit.

1.59 output_dataregs

This line contains a dump of the data registers at the time
of the

Enforcer

hit.

1.60 output_d0

The DO register of the 680x0 CPU.

See
Data:

1.61 output_d1

The D1 register of the 680x0 CPU.

See
Data:

Enforcer 60/73

1.62 output_d2

The D2 register of the 680x0 CPU.

See
Data:

1.63 output_d3

The D3 register of the 680x0 CPU.

See
Data:

1.64 output_d4

The D4 register of the 680x0 CPU.

See
Data:

1.65 output_d5

The D5 register of the 680x0 CPU.

See
Data:

1.66 output_d6

The D6 register of the 680x0 CPU.

See
Data:

1.67 output_d7

The D7 register of the 680x0 CPU.

See
Data:

Enforcer 61/73

1.68 output_addrregs

This line contains a dump of the address register at the
time of the

Enforcer

hit.

1.69 output_a0

The A0 register of the 680x0 CPU.

See
Addr:

1.70 output_at

The Al register of the 680x0 CPU.

See
Addr:

1.71 output_a2

The A2 register of the 680x0 CPU.

See
Addr:

1.72 output_a3

The A3 register of the 680x0 CPU.

See
Addr:

1.73 output_ad

The A4 register of the 680x0 CPU.

See
Addr:

Enforcer

62/73

1.74 output_ab

The A5 register of the 680x0 CPU.

See
Addr:

1.75 output_ab

The A6 register of the 680x0 CPU.

See
Addr:

1.76 output_a7

The A7 register of the 680x0 CPU is also known as the
Stack Pointer or SP. In the

Enforcer

hit, the USER SP
(the stack of the task that caused the hit) is displayed
in the USP: field.

See
Addr:

1.77 output_stack

These lines contain stack dumps from the task that caused
the

Enforcer

hit. It can be used to figure out what the
program was doing and what routines called the current
routine by looking at the wvalues on the stack.

1.78 output_stackword

This is a longword on the stack of the task that caused the hit

See
Stck:
for more details.

Enforcer 63/73

1.79 output_segtracker

This symbol "-—-—->" identifies a line produced via the

SegTracker
utility.

See

FindHit
for details as to how to use this information.

1.80 output_segtrackeraddress

This i1s the address that the hunk/offset describes. This is here <«

such
that you can cross-reference it with a value on the stack, in a register,
or the program counter. The hunk/offset on the same line are produced
when this address is processed via
SegTracker
See
FindHit

for details as to how to use this information.

1.81 output_segtrackername

This is the name of the file, as passed to LoadSeg, which was <
found to
be loaded around the address given. See
FindHit
for details as to how
to use this information.

1.82 output_segtrackerhunk

This is the hunk in the load file that was loaded around the
given address. See
FindHit
for details as to how
to use this information.

1.83 output_segtrackeroffset

This is the offset from the start of the hunk that this address is
at within the given load file. See
FindHit
for details as to how
to use this information.

Enforcer 64 /73

1.84 output_name

This line contains the decoding of the TCB into the TASK name,
the CLI command (if a CLI), and if the hit happened in the SegList
attached to the process, the hunk and offset for the hit. Note
that this hunk/offset is not produced by

SegTracker

1.85 output_taskname

This field contains the task name as stored in the TCB of the task
that caused the

Enforcer

hit. TIf the TCB is invalid, it will say so.

1.86 output_cliname

This field will contain the name of the CLI command that caused the
hit if the TCB is a CLI process and there was a command loaded.

If the task is not a CLI process or no command is loaded, this
field will not be displayed.

1.87 output_alert

This output happens when a program or the OS calls the EXEC Alert

function.
Enforcer
catches these calls and will display the alert
information as seen above. (With the data and time as needed)

1.88 output_alertnum

This field contains the alert number that was generated. Check
the include file exec/alerts.h or exec/alerts.i for details as
to how to decode this number.

1.89 output_showpc

If the SHOWPC option is turned on,
Enforcer
will dump the 8 longwords
before the program counter and the 8 longwords starting at the PC.

This can be used to help debug programs by being able to look at the
code around the hit by disassembling it.

Enforcer

65/73

1.90 output_showpc_m8

This is the longword at the memory address
where PC is the
Program Counter
of the
Enforcer
hit.

1.91 output_showpc_m7

This is the longword at the memory address
where PC is the
Program Counter
of the
Enforcer
hit.

1.92 output_showpc_m6

This is the longword at the memory address
where PC is the
Program Counter
of the
Enforcer
hit.

1.93 output_showpc_m5

This is the longword at the memory address
where PC is the
Program Counter
of the
Enforcer
hit.

1.94 output_showpc_m4

This is the longword at the memory address
where PC is the
Program Counter
of the
Enforcer
hit.

(PC - $20)
(PC - $1C)
(PC - $18)
(PC - $14)
(PC - $10)

Enforcer 66/73

1.95 output_showpc_m3

This is the longword at the memory address (PC - $0C)
where PC is the
Program Counter
of the
Enforcer
hit.

1.96 output_showpc_m2

This is the longword at the memory address (PC - $08)
where PC is the
Program Counter
of the
Enforcer
hit.

1.97 output_showpc_m1

This is the longword at the memory address (PC - $04)
where PC is the
Program Counter
of the
Enforcer
hit.

1.98 output_showpc_p0

This is the longword at the memory address (PC)
where PC is the
Program Counter
of the
Enforcer
hit.

1.99 output_showpc_p1

This is the longword at the memory address (PC + $04)
where PC is the
Program Counter
of the
Enforcer
hit.

Enforcer

67/73

1.100 output_showpc_p2

This is the longword at the memory address
where PC is the
Program Counter
of the
Enforcer
hit.

1.101 output_showpc_p3

This is the longword at the memory address
where PC is the
Program Counter
of the
Enforcer
hit.

1.102 output_showpc_p4

This is the longword at the memory address
where PC is the
Program Counter
of the
Enforcer
hit.

1.103 output_showpc_p5

This is the longword at the memory address
where PC is the
Program Counter
of the
Enforcer
hit.

1.104 output_showpc_p6

This is the longword at the memory address
where PC is the
Program Counter
of the
Enforcer
hit.

(PC + $08)

(PC + $0C)

(PC + $10)

(PC + $14)

(PC + $18)

Enforcer 68/73

1.105 output_showpc_p7

This is the longword at the memory address (PC + $1C)
where PC is the
Program Counter
of the
Enforcer
hit.

1.106 sourcecode

Advanced Enforcer V37 - Source Code

I have never charged money for the use of Enforcer as a tool to
help make better Amiga programs. Enforcer has helped make Amiga
software some of the most reliable software on any computer
platform.

I have not, however, made the source available. The main reason
being that I want to keep the quality of Enforcer high and reduce
the chances that there would be "derivative" versions of Enforcer.

People still ask about how to get the source...

Well, you asked for it; now you can get it...

You can now get the source code to Enforcer and all of Enforcer’s
tools. For $60 (US) I will send you a disk or EMail you an
archive that contains the complete build of Enforcer. Including
source and object files, makefiles, icons, etc.

The price is not even as high as people had suggested to sell
Enforcer for, but I do wish to make some money so that I can

keep doing Amiga work.

The source is fully commented and should be of interest to anyone who
likes looking how things work on the inside.

However, there are some restrictions:

a) The source code is not to be distributed. If you did not
get it directly from me, please let me know.

b) Any programs made with the source code are not to be
distributed without first letting see the new code.

c) For commercial use of the source or programs developed from
the source, please contact MKSoft Development.

If you have special needs or requirements, please contact me.
I would be more than willing to address any concerns/wishes

you may have.

To order on-line, go to http://www.iam.com/amiga/enforcer.html

Enforcer 69/73

or fill out the
order form
and send to:
Michael Sinz
MKSoft Development
105 Keim Road
Elverson, PA 19520

Enforcer@sinz.org

1.107 orderform

Single user, non-commercial license

Single user, non-commercial license: $60.00
Shipping: ($2 USA/S$6 elsewhere)

Internet E-Mail delivery: (no cost) 0.00

All checks in US funds.
Make checks payable to: MKSoft Development

1.108 index

Index of all nodes in the Enforcer.guide document:

Enforcer

70/73

68020 Notes

68030 Notes

68040 Notes

68060 Notes

68040.1library & 68060.library notes

68040.1library patches

Copyback and DMA

Debuggers:

Debuggers:

Detail Example Hit

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

- Copyright © 1992-1998

Not causing a hit

Trapping a hit

Beta Testers

Credits

Documentation

Output: A0 Register
Output: Al Register
Output: A2 Register
Output: A3 Register
Output: A4 Register
Output: A5 Register
Output: A6 Register
Output: A7 Register
Output: Address hit
Output: Address Register Dump
Output: Alert Number
Output: Alerts

Output: Bus Error
Output: CLI Command Name

Enforcer

71/73

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Output:

Output:

Output:

Output:

Output:

Output:

Output:

Output:

Output:

Output:

Output:

Output:

Output:

Output:

Output:

Output:

Output:

Output:

Output:

Output:

Output:

Output:

Output:

Output:

Output:

Output:

Output:

Output:

CPU Status Register

DO Register

D1 Register

D2 Register

D3 Register

D4 Register

D5 Register

D6 Register

D7 Register

Data Register Dump

Data

Date

Hunk

Write

Stamp

Offset

Program Counter

SegTracker

SegTracker Address

SegTracker Name

Show

Show

Show

Show

Show

Show

Show

Show

Show

Show

PC

PC+$00

PC+$04

PC+$08

PC+50C

PC+$10

PC+$14

PC+$18

PC+S$1C

PC-504

Enforcer

72/73

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Enforcer

Output:

Output:

Output:

Output:

Output:

Output:

Output:

Output:

Output:

Output:

Output:

Output:

Output:

Output:

Output:

Source C

Show

Show

Show

Show

Show

Show

Show

Special information

Special Status Word

PC-508

PC-$0C

PC-$10

PC-$14

PC-$18

PC-S51C

PC-520

Stack Dump

Stack Word

Task Control Block

Task

Task/Process Name

Name

Write Hit

ode

Example Enforcer output

Famous MKSoft Quotes

FindHit

FindSeg: A SegTracker example

General
LawBreak
MMU tool
Move4dK
Option:
Option:
Option:
Option:

Option:

Notes

er

AREGCHECK

BUFFERSIZ

DATESTAMP

DEADLY

DREGCHECK

E

Enforcer

73/73

Option:
Option:
Option:
Option:
Option:
Option:
Option:
Option:
Option:
Option:
Option:
Option:
Option:
Option:
Option:
Option:
Option:

Option:

FILE

FSPACE

INTRO

LED

NOALERTPATCH

ON

PARALLEL

PRIORITY

QUIET

QUIT

RAWIO

SHOWPC

SMALL

STACKCHECK

STACKLINES

STDIO

TINY

VERBOSE

Order Form

SegTracker

	Enforcer
	main
	credits
	credits_testers
	enforcer
	findhit
	lawbreaker
	mmu
	move4k
	segtracker
	rebootoff
	debuggers1
	debuggers2
	notes1
	notes2
	notes3
	notes4
	notes6
	cpu_library
	cpu_patches
	copyback_dma
	option_quiet
	option_tiny
	option_small
	option_showpc
	option_stacklines
	option_stackcheck
	option_aregcheck
	option_dregcheck
	option_datestamp
	option_deadly
	option_fspace
	option_verbose
	option_led
	option_parallel
	option_rawio
	option_file
	option_stdio
	option_buffersize
	option_intro
	option_priority
	option_noalertpatch
	option_on
	option_quit
	output
	findseg
	quotes
	copyright
	detailexample
	output_datestamp
	output_write
	output_address
	output_writedata
	output_pc
	output_buserror
	output_sr
	output_sw
	output_decode
	output_tcb
	output_dataregs
	output_d0
	output_d1
	output_d2
	output_d3
	output_d4
	output_d5
	output_d6
	output_d7
	output_addrregs
	output_a0
	output_a1
	output_a2
	output_a3
	output_a4
	output_a5
	output_a6
	output_a7
	output_stack
	output_stackword
	output_segtracker
	output_segtrackeraddress
	output_segtrackername
	output_segtrackerhunk
	output_segtrackeroffset
	output_name
	output_taskname
	output_cliname
	output_alert
	output_alertnum
	output_showpc
	output_showpc_m8
	output_showpc_m7
	output_showpc_m6
	output_showpc_m5
	output_showpc_m4
	output_showpc_m3
	output_showpc_m2
	output_showpc_m1
	output_showpc_p0
	output_showpc_p1
	output_showpc_p2
	output_showpc_p3
	output_showpc_p4
	output_showpc_p5
	output_showpc_p6
	output_showpc_p7
	sourcecode
	orderform
	index

